Appendices (Available Electronically)

A. Methods and Assumptions Document
B. Traffic Forecast Memo
C. Existing Condition Memo
D. Future Conditions Memo
E. Build Concept
F. HCS Analysis Reports
G. Concept Evaluation Memorandum
H. Safety Memo / IHSDM Output

Appendix A - Methods and Assumptions Document

AMENDMENT \#1

Methods \& Assumptions Document

I-229 Exit $6\left(10^{\text {th }}\right.$ Street) Interchange Study
HP5596(20) P (Interchange Study)

1. Methods and Assumptions Document

This Methods and Assumptions document was developed in preparation for the Methods and Assumptions Meeting held as part of the project start-up with representatives from the South Dakota Department of Transportation (SDDOT), Federal Highway Administration (FHWA), City of Sioux Falls, and Sioux Falls MPO. This document is intended to serve as a historical record of the process, dates, and decisions made by the study team representatives for the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study portion of the project.

2. Stakeholder Acceptance Page

The undersigned parties concur with the Methods and Assumptions for the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study as presented in this document.

Planning/Civil Rights Specialist
Title

The undersigned parties concur with AMMENDMENT \#1 to the Methods and Assumptions for the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study as presented in this document in red.

SDDOT:

Signature

Title

Date

FHWA:

Signature

Title

Date

Notes:
(1) Participation on the Study Advisory Team and/or signing of this document does not constitute approval of the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study Final Report or conclusions.

I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study
M\&A Document
(2) All members of the Study Advisory Team will accept this document as a guide and reference as the study progresses through the various stages of development. If there are any agreed-upon changes to the assumptions in this document a revision will be created, endorsed, and signed by all the signatories.

3. Introduction and Project Description

Project Background, Understanding, and Need for Study

The recently completed I-229 Major Investment Study determined that the I-229 Exit 6 ($10^{\text {th }}$ Street) interchange will need modification to better handle current and future traffic. That study also recommended that the I-229 mainline be expanded to 3 lanes in each direction between Exit 5 ($26^{\text {th }}$ Street) and Exit 6 (10 ${ }^{\text {th }}$ Street).

SDDOT currently intends to reconstruct the 1229 mainline and Exit 6 in conjunction with City of Sioux Falls construction of $10^{\text {th }}$ Street east and west of the interchange. The exact limits of the construction will be determined by this study and are currently planned to begin in for Federal fiscal year 2027.

Five future alternatives for the Exit 6 interchange were forwarded from the I-229 Major Investment Study. The technical feasibility of each alternative will be evaluated for consideration in the forthcoming environmental documentation. The alternatives include:

- No-Build
- Widen existing single point interchange, 4-lane divided corridor
- Widen existing single point interchange, 5-lane undivided corridor
- Convert to DDI interchange, 4-lane divided corridor
- Convert to DDI interchange, 5-lane undivided corridor

One additional interchange alternative will be evaluated, including:

- Modification of single point interchange through the addition of a second northbound to westbound left turn lane, a second northbound to eastbound right turn lane, and a second southbound to eastbound left turn lane

Three future alternatives for the I-229 mainline were forwarded from the I-229 Major Investment Study. The technical feasibility of each alternative will be evaluated for consideration in the forthcoming environmental documentation. The alternatives include:

- No Build
- Convert to a six-lane cross-section with no curve improvement
- Convert to a six-lane cross-section with curve improvement

Two additional alternatives for the I-229 mainline will be evaluated, including:

- Widen inside shoulder north of $18^{\text {th }}$ Street to $10^{\text {th }}$ Street
- No inside shoulder widening

Study expectations and objectives, identified in the study Request for Proposal (RFP), include:

1. Interchange Modification Study: The development of the Interchange Modification Justification Report (IMJR) for the interchange.
2. Environmental Study: The development of all environmental documentation
necessary for the construction project to modify the interchange and related crossroad improvements.
3. Topographic Survey: Conducting the survey data necessary for design.
4. Subsurface Utility Engineering and Evaluation (SUE): Collecting the subsurface utility locations.
5. Design: Complete design necessary to prepare construction plan set(s) for the project(s).

Study Schedule

Date	Task/Event
July 2020	Project Kickoff and M\&A Document
August - September 2020	Data Collection
September - October 2020	Traffic Forecasts, Analysis, and Crash History Reviews
October 2020	Concept Development, Analysis, and Screening
October - November 2022 2020	Build Options Refinement, Analysis, and Screening
December 2022 2020	Draft IMJR
January 2023 2024 - March 2023 2024	IMJR Document Reviews and Revisions
April 2023 2024	Final IMJR and Draft Environmental Scan Documents (as field conditions allow, certain studies may be delayed if dependent upon weather conditions)

Location

The I-229 Exit 6 interchange is located within east-central Sioux Falls. Details of the study area, including the I-229 mainline and adjacent intersecting arterial streets are provided in Section 4 of this document.

Facilities Affected by the Study

The study will evaluate traffic conditions on public facilities within the study area, including the I-229 and $10^{\text {th }}$ Street corridors and connecting streets. Private access/driveway locations within the study area are also likely to be affected. See the Study Area discussion for a list of these facilities.

Widening on the I-229 mainline could impact the interstate overpasses at $12^{\text {th }}$ Street and $18^{\text {th }}$ Street, requiring reconstruction of the structures. If reconstructed, the structures need to provide pedestrian and bicycle access for both eastbound and westbound non-motorized traffic.

Modifications within the study area may also affect parallel and cross-routes around the study area through detour routes during construction and potential shifts in traffic patterns following construction.

Previous Studies

The following previous studies will be reviewed during this study:

- Go Sioux Falls MPO 2040 Long-Range Transportation Plan
- http://siouxfallsmpo.org/files/3815/1119/5024/SiouxFalls2040LRTPFinalNov2015wApp.pdf
- Shape Sioux Falls 2045 Comprehensive Plan (currently being finalized)
- Coordinated Public Transit - Human Services Plan
- http://siouxfallsmpo.org/files/3715/7410/4775/2018 Coordinated Plan with Addendu ms.pdf
- MPO Bicycle Plan
- http://siouxfallsmpo.org/files/1313/7766/4918/MPO Bicycle Plan.pdf
- I-229 Major Investment Corridor Study
- http://www.i229study.com/
- I-229 Exit 5 ($26^{\text {th }}$ Street) Interchange Justification Study
- https://dot.sd.gov/media/documents/Exit5 26thStreet IMJR102714.pdf
- I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Final Report
- https://dot.sd.gov/media/documents/I229 SS3 FINALReportAppendices June2017.pdf
- I-229 Exit 7 (Rice Street) Final Report
- https://dot.sd.gov/media/documents/I229 SS5 FINALReportAppendices June2017.pdf

Study Advisory Team Members

A Study Advisory Team has been formed to guide the study through completion. The Study Advisory Team is comprised of representative parties of the SDDOT, FHWA, the City of Sioux Falls, and the Sioux Falls MPO. Members of the Study Advisory Team are:

Participant	Agency
Greg Aalberg	SDDOT - Sioux Falls Area
Shannon Ausen	City of Sioux Falls - Public Works
Jeff Brosz	SDDOT - Trans. Inv. Management
Travis Dressen	SDDOT - Mitchell Region
Stacy DuChene	SDDOT - Road Design
Jim Feeney	Sioux Falls MPO
Joel Gengler	SDDOT - ROW
Sarah Gilkerson	SDDOT - Project Development
Steve Gramm	SDDOT - Project Development

Heath Hoftiezer	City of Sioux Falls - Public Works
Joanne Hight	SDDOT - Administration
Mark Hoines	FHWA
Andrea Kramer	SDDOT - Administration
Tom Lehmkuhl	FHWA
Steve Kerr	SDDOT - Bridge Design
Scott Rabern	SDDOT - Road Design
Brian Rogness	SDDOT - Project Development
Brooke White-Joseph Sestak	SDDOT - Mitchell Region
Kelly VanDeWiele	FHWA

* Additional team members may be added as the study progresses.

4. Study Area

The I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Study area includes (corridors highlighted in red in Figure 1):

- $10^{\text {th }}$ Street from the intersection with Jessica Avenue to the signalized HyVee/Campbells entrance, approximately 0.75 miles
- $26^{\text {th }}$ Street from Van Eps Avenue to Southeastern Avenue, approximately 0.75 miles
- Rice Street from Lowell Avenue to Bahnson Avenue, approximately 1.2 miles
- $6{ }^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue, approximately 0.3 miles
- $12^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue, approximately 0.3 miles
- $18^{\text {th }}$ Street from Southeastern Avenue to Cleveland Avenue, approximately 0.4 miles
- Southeastern Avenue from $26^{\text {th }}$ Street to $18^{\text {th }}$ Street, approximately 0.6 miles
- Mainline I-229 from north of I-229 Exit 4 interchange to north of the I-229 Exit 7 interchange, approximately 3.5 miles
- The ramps for the I-229 Exit $5\left(26^{\text {th }}\right.$ Street) interchange
- The ramps for the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) interchange
- The ramps for the I-229 Exit 7 (Rice Street) interchange

The limits of the environmental study will be determined as part of the planning study but are anticipated to encompass a smaller area than the study corridors.

Refinements of the mainline, interchange and arterial alternatives will be made to address the findings of the technical analysis and will be reflected in the final study results and reported measures of effectiveness.

Figure 1 - Study Area Overview Map

Study intersections that will be analyzed as multi-modal intersections, either signal or stop sign controlled, include:

Ref \#	Street \#1	Street \#2
1	$10^{\text {th }}$ Street	Jessica Avenue
2	$10^{\text {th }}$ Street	Lowell Avenue
3	$10^{\text {th }}$ Street	Conklin Avenue
6	$10^{\text {th }}$ Street	Blaine Avenue
7	$10^{\text {th }}$ Street	Cleveland Avenue
8	$10^{\text {th }}$ Street	Hy-Vee/Campbell's Entrance
9	$26^{\text {th }}$ Street	Van Eps Avenue
10	$26^{\text {th }}$ Street	Yeager Road/Frederick Drive
13	$26^{\text {th }}$ Street	Southeastern Avenue
14	$26^{\text {th }}$ Street	Cleveland Avenue
15	Rice Street	Lowell Avenue
18	Rice Street	Bahnson Avenue
19	$18^{\text {th }}$ Street	Southeastern Avenue
20	$18^{\text {th }}$ Street	Cleveland Avenue
21	$12^{\text {th }}$ Street	Lowell Avenue
22	$12^{\text {th }}$ Street	Cleveland Avenue
23	$6^{\text {th }}$ Street	Lowell Avenue
24	$6^{\text {th }}$ Street	Cleveland Avenue

Study intersections that will be analyzed as interchange ramp terminals include:

Ref $\#$	Street \#1	Street \#2
4	$10^{\text {th }}$ Street	Single Point Ramp Terminal
11	$26^{\text {th }}$ Street	SB Ramp Terminal
12	$26^{\text {th }}$ Street	NB Ramp Terminal
16	Rice Street	SB Ramp Terminal
17	Rice Street	NB Ramp Terminal

5. Analysis Years/Periods

This study will evaluate traffic operations during the following time periods:

- Existing Conditions (Year 2021)
- Year of Project Completion (Year 2027)
- Planning Horizon Year (Year 2050)

Existing Conditions (Year 2021)

Existing conditions analyses will be conducted for year 2020 volume conditions. The raw counts will be factored to a design season and balanced between intersections. Peak hour volumes will be determined on a per intersection basis and representative of:

- AM Peak Hour
- PM Peak Hour

Future Conditions (Years 2027 and 2050)

Future/Design conditions analyses will be conducted for years 2027 Year of Project Completion and 2050 Planning Horizon Year. Traffic forecasts for these Future Conditions will be developed using methodology outlined in the 'Existing Volumes and Traffic Forecasts' section. Future Conditions peak hour timeframes will coincide with those identified in the Existing Conditions.

For 2027 Year of Project Completion and 2050 Planning Horizon Year, the following peak hours will be evaluated:

- AM Peak Hour
- PM Peak Hour

6. Data Collection

Intersection Turning Movement Count Data

Turning movement counts define actual traffic at the study intersections during a typical weekday. Turning movement counts are available for some of the study area intersections while new counts will have to be conducted at other locations. The City will provide historical turning movement counts from 2017 - 2019 and new counts will be conducted at any locations that have not been counted during this period. All counts will be factored for annual growth and seasonality to produce a balanced 2021 data set for analysis. Factoring of historical counts will be used to eliminate the effects of the COVID-19 pandemic on traffic volumes and to account for construction within the study area.

Counts at Rice Street/Bahnson Avenue and $12^{\text {th }}$ Street/Lowell Avenue will be collected by the consultant team in September 2020. The new intersections at $26^{\text {th }}$ Street/ Frederick Drive/Yeager Road and $26^{\text {th }}$ Street/ I-229 SB ramp will be counted after $26^{\text {th }}$ Street construction is completed to establish a volume baseline and validate the balanced 2021 data set. The new turning movement counts will be 12-hour duration (6:00 AM to 6:00 PM), collected to cover the AM and PM peak periods in 15-minute
intervals. Vehicle classification and pedestrian/bicycle data will also be included in these counts. Study area intersections and count status include:

Ref \#	Street \#1	Street \#2	Year Last Collected
1	$10^{\text {th }}$ Street	Jessica Avenue	2017
2	$10^{\text {th }}$ Street	Lowell Avenue	2017
3	$10^{\text {th }}$ Street	Conklin Avenue	2013
4	$10^{\text {th }}$ Street	Single Point Ramp Terminal	2019
5	$10^{\text {th }}$ Street	NB Ramp Terminal	$* * *$
6	$10^{\text {th }}$ Street	Blaine Avenue	2013
7	$10^{\text {th }}$ Street	Cleveland Avenue	2019
8	$10^{\text {th }}$ Street	Hy-Vee/Campbell's Entrance	2019
9	$26^{\text {th }}$ Street	Van Eps Avenue	2018
10	$26^{\text {th }}$ Street	Yeager Road/Frederick Drive	$2018^{* *}$
11	$26^{\text {th }}$ Street	SB Ramp Terminal	$* *$
12	$26^{\text {th }}$ Street	NB Ramp Terminal	$2018^{* *}$
13	$26^{\text {th }}$ Street	Southeastern Avenue	$2018^{* *}$
14	$26^{\text {th }}$ Street	Cleveland Avenue	2018
15	Rice Street	Lowell Avenue	2015
16	Rice Street	SB Ramp Terminal	2018
17	Rice Street	NB Ramp Terminal/Cleveland	2018
18	Rice Street	Bahnson Avenue	1998^{*}
19	$18^{\text {th }}$ Street	Southeastern Avenue	2018
20	$18^{\text {th }}$ Street	Cleveland Avenue	2018
21	$12^{\text {th }}$ Street	Lowell Avenue	$*$
22	$12^{\text {th }}$ Street	Cleveland Avenue	2019
23	$6^{\text {th }}$ Street	Lowell Avenue	2015
24	$6^{\text {th }}$ Street	Cleveland Avenue	2018

*Counted by Consultant in 2020
**Currently under construction - previous count data will be factored and balanced for initial analysis and intersections 10 and 11 will be counted after construction is complete.
***Intersection does not currently exist - volumes to be forecast depending on scenario

Interchange/Interstate Count Data

The SDDOT will provide 24 -hour traffic volume ramp and crossroad counts for I-229 Exits 5, 6, and 7, and I-229 mainline.

Collected data will include mainline per vehicle record, which will provide time, class, and speed for each vehicle.

Heavy Vehicle Data

Intersection heavy vehicle percentages will be determined by intersection turning movement counts. Interstate mainline heavy vehicle percentages will be determined by 24-hour mainline counts.

Traffic Data Collection Techniques

All traffic data was/will be collected using standard field practices, which may consist of video cameras at intersections and tube counters on roadway segments.

Counts will be collected on a Tuesday, Wednesday, or Thursday when school is in session during good driving/weather conditions. The City has maintained an index of traffic volumes at selected arterial street intersections throughout the COVID-19 pandemic. That index shows that recent volumes have returned to near pre-pandemic levels. Recent SDDOT count also show traffic volume trends returning to normal. The Sioux Falls index will be used to develop factors for application to new traffic counts to create consistent data sets independent of the effects of the pandemic. New counts will represent a small portion of the total traffic data set and all volumes will be balanced to reflect pre-pandemic conditions.

The percentages of Interstate traffic that enter from an interchange on ramp, remain in the auxiliary lane, and exit at the following off-ramp are available from previous studies and will be augmented with samples within the study area. The previous study data were obtained from smartphone tracking analysis provided by StreetLight Data, Inc. and represent the 2017-2018 period.

Additional Data Supplied by SDDOT, City of Sioux Falls, or Sioux Falls MPO

- Existing vehicular traffic data, including crash data and turning movement counts as mentioned above
- Existing structure condition data
- SDDOT Road Design Manual
- Available construction plans
- Available land survey data (topography and original DTM file)
- Available GIS data, including aerial photography, parcel information, existing land use (rooftops and commercial square footage) and crash locations
- Available data and reports from previously completed and on-going studies

Free-Flow Speeds

I-229 free-flow speeds will be based on measured speeds collected as part of the 24hour counts, supplemented by data collected for the I-229 Major Investment Study. Additional verification will be provided through the MPM-RDS database.

Crossroad free-flow speeds will be estimated using estimation procedures documented in HCM6. Required data, such as lane widths, speed limits, and lateral clearance, will be obtained from field visits, available construction plans, and future concept geometrics.

7. Existing Volumes and Traffic Forecasts

Existing Volumes

The following process will be used to develop the study area Existing Conditions (2020) AM and PM peak period traffic volumes:

1. Identify AM and PM peak hours at each study intersection.
2. Factor counts to a design season (factor provided by SDDOT).
3. Factor counts to account for annual and COVID index variances.
4. Balance counts across study area intersections/roadway segments to five (5) vehicle increments. For low-volume movements, presented movement volume may be less than 5 vehicles.

Heavy vehicle percentages based on collected 2020 vehicle classification counts.

Traffic Forecasts

The Sioux Falls MPO Travel Demand Model will be utilized for the purposes of this study.

FHWA requirements for use of the travel demand model include documentation of the following:

1. Assemble continuous daily, directional traffic count information for comparison with Year of Project Completion model information.
2. Compare Year of Project Completion model estimated volumes to observed counts within the project study area.
3. Discuss impacted travel markets where path diversion is most likely to occur.
4. Compare model estimated and observed travel speeds on the project main line and directly impacted facilities (e.g. arterials at a new interchange).

The following methodology will be used to develop 2027 Year of Project Completion and 2050 Planning Horizon Year traffic forecasts:

1. Obtain existing traffic data for the study area freeway segments and intersections.
2. Identify AM and PM peak hour volumes for the area freeway segments and intersections.
3. Develop "K" factors for the AM and PM peak periods.
4. Obtain calibrated Year of Project Completion and future year GIS-based model output from City of Sioux Falls Staff.
5. Generate 24-hour, AM peak hour, and PM peak hour link volumes
6. Develop a growth rate based on the base year and 2050 models
a. Project 2050 Planning Horizon Year volumes based on growth rate.
b. Interpolate growth between base year and 2050 models to determine 2027 Year of Project Completion volumes.
c. Make necessary post-processing adjustments.
7. Using existing turning movement percentages from collected traffic count data and model distribution, develop design turning movement volumes for the purposes of intersection evaluation.
a. Smooth and balance forecasts to five (5) vehicle increments within the study area.
b. For low-volume movements, presented movement volume may be less than 5 vehicles.
c. If a location shows a decline in traffic volumes between the Existing Conditions (2020) and years 2027 and 2050 and no readily-apparent reason for this decline is identified after reviewing model input, the reported volumes will be held at 0\% growth in developing the future-year volume and noted to the SAT.
8. Complete needed evaluation on design volumes calculated.

Heavy vehicle percentages based on collected 2020 vehicle classification counts.

8. Traffic Operations Analysis

Traffic Operations Analysis

1. Software
a. Signalized Intersections
i. Highway Capacity Software (HCS7) Release 7.9 (HCM 6 ${ }^{\text {th }}$ Edition (HCM6) methodology) Streets module
2. Ramp terminal intersections meeting the interchange types defined in HCM6 Chapter 23 (Interchange Ramp Terminals) will be analyzed with the Interchanges section of the HCS7 Streets module.
b. Non-signalized intersections may include:
i. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) Two-Way Stop-Control (TWSC) module 1. Ramp terminal intersections with stop control will be included.
ii. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) All-Way Stop-Control (AWSC) module
iii. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) Roundabouts module
c. Basic Freeway, Ramp Junctions and Weave Areas
i. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) Freeways Facility module
d. Pedestrians and Bikes may include:
i. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) Street module
3. For segment pedestrian and bicycle LOS scores, applies only to corridors with signalized boundary intersections.
4. For signalized intersection pedestrian and bicycle LOS scores
ii. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) TWSC module
5. For TWSC intersection pedestrian LOS scores (crossing major road)
iii. Highway Capacity Software (HCS7) Release 7.9 (HCM6 methodology) Two-Lane Highways module
6. For segment bicycle LOS scores on two-lane highway segment

Synchro/SimTraffic software may be utilized, if necessary, for the development of signal timings and/or queue length projections.
2. Operational Analysis Results (Existing Conditions and Future No-Build Conditions)
a. Level of Service (LOS)
i. Ramp Terminal Intersections

1. LOS based on HCM6 Chapter 20 (TWSC Intersection) methodology.
ii. Crossroad Corridor Intersections
2. LOS based on
a. HCM6 Chapter 20 (TWSC Intersection) methodology, and
b. Weighted average intersection delay
i. Based on total 'Intersection Delay' as reported in HCS7 TWSC module compared with AWSC LOS thresholds.
iii. Basic Freeway, Ramp Junctions and Weave Areas
3. LOS based on HCM6 Chapter 10 Freeway Facilities Core Methodology
4. Operational Analysis Results (Future Build Conditions)
a. Signal Warrants
i. Signal warrant analysis will be completed for study area intersections along the corridor as determined by the SAT. Some potential interchange configurations require signals regardless of warrant.
ii. If results of a signal warrant analysis indicates a signal may be warranted in one of the study analysis years, an approximate year in which the warrant(s) is/are met will be determined based on a straight-line interpolation of traffic volumes between the Existing Conditions (2020) and 2050 Planning Horizon Year.
b. Level of Service (LOS)
i. Freeway Segments
5. Urban area minimum allowable LOS - LOS ‘C'; LOS ‘B’ desirable.
ii. Ramp Terminal Intersections
6. Urban area minimum allowable LOS - LOS 'G' LOS 'F'; LOS will not be used. Instead:
a. Individual movements will be allowed to operate at LOS ' D ' but the overall intersection LOS shall be ' C ' or better. 95th percentile queuing at ramp terminal intersections must be contained to the ramps, and not extend onto mainline l-229.
iii. Signalized Non-Ramp Terminal Intersections modified by project improvements.
7. Urban area minimum allowable LOS - LOS 'D'
a. Individual movements cannot operate with a v/c ratio greater than 1.0.
b. Individual movements will be allowed to operate at LOS 'E', but the overall intersection LOS shall be 'D’ or better.
iv. Other intersections modified by project improvements
8. Urban area minimum allowable LOS - LOS ' D '
a. Individual movements will be allowed to operate at LOS ' E ' or ' F ', but the overall intersection LOS shall be ' D ' or better.
v. Intersections not modified by project improvements
9. Minimum allowable LOS - LOS ' D ’
a. Individual movements will be allowed to operate at LOS ' E ' or ' F ', but the overall intersection LOS shall be 'D' or better.
vi. TWSC Intersection LOS Reporting
10. HCM6 Chapter 20 (TWSC Intersection) methodology, and
11. Weighted average intersection delay
a. Based on total 'Intersection Delay' as reported in HCS7 TWSC module compared with HCM6 AWSC LOS Thresholds.
vii. Queue Storage Ratio
12. Queue storage ratio greater than 1.0 for any movement will result in the overall intersection being reported as LOS F.
viii. Basic Freeway, Ramp Junctions and Weave Areas
13. Urban area minimum allowable LOS - LOS ' C '
14. Variables
a. Peak Hour Factor (PHF)
i. Existing Conditions (2020) analysis will use calculated PHFs from existing counts with a maximum value of 0.90 .
ii. Planning Horizon Year (2050) conditions and Year of Project Completion (2027) analysis will use 'Suggested Default Values' for PHFs as indicated in HCM6:
15. TWSC Analysis: 0.92
16. AWSC Analysis: 0.92
17. Roundabout Analysis: 0.92
18. Two-Lane Highway Analysis: 0.88
19. Signalized Arterial and Ramp Terminal Intersections Analysis:
a. 0.92 for $\geq 1,000 \mathrm{veh} / \mathrm{h}$ entering volume
b. 0.90 for $<1,000$ veh/h entering volume
b. Saturation Flow Rate
i. SDDOT Design Manual indicates the use of up to $1,900 \mathrm{vph}$ ideal saturation flow rate in urban and suburban areas and up to 1,700 vph in rural areas. An ideal saturation flow rate of $1,800 \mathrm{vph}$ will be used for this study to account for a mix of urban and visiting driver
behavior. This value will be used for the signalized intersections, uncontrolled movements along major route through a TWSC intersection, and freeway locations within the study area.
c. Traffic Signal Controllers
i. Operational analysis will allow for both actuated and coordinated controllers.
d. Left-Turn Phasing
i. Protected, Permitted/Protected or Split Phasing will be allowed at intersections.
e. Heaviest Lane Volume (HLV)
i. Default HCS Streets values used for ramp terminal/arterial intersections.
f. Heavy Vehicle Percentage
i. Based on sampling of existing traffic.
g. Phase Change Intervals
i. Future No-Build (Year 2027 and 2050) Conditions
20. Phase change intervals will be calculated for new signalized intersections using methodologies outlined in the SDDOT Road Design Manual.
h. Right Turn on Red
i. All intersections will be evaluated with the HCM6 default of 0 unless otherwise determined by the SAT.
i. Design Input Data for HCS Analysis
i. Existing Conditions and No-Build Conditions will use design features based on construction plans and/or available GIS roadway characteristic data.
ii. Build Conditions will correspond to respective Build Alternative design.
iii. Terrain: Flat
iv. Highway Class (arterial crossroads): as recommended in HCM6.
v. Free-Flow Speed:
21. Arterial crossroads Existing and Build Conditions: measured speed, as available, or current posted speed limit +5 mph
22. I-229 Existing and Build Conditions: measured speed

9. Safety Issues

Crash data will be reviewed for the study area based on South Dakota Department of Public Safety (SDDPS) crash records for the most recent five years of available data. SDDPS's database will be the only database used in the calculation of crash rates and critical crash rates. The following information will be provided from the crash analysis:

- Segment and Intersection Crash Rates
- Segment and Intersection Critical Crash Rates (per Highway Safety Manual)
- Crash Trends
- Potential Mitigation Measures to Improve Locations Above Critical Crash Rates

A safety analysis of Build Options for 2027 Year of Project Completion and 2050 Planning Horizon Year time periods be completed utilizing FHWA's Interactive Highway Safety Design Model's (IHSDM) Crash Prediction Module in accordance with the Highway Safety Manual. SDDOT-provided calibration data, if available, will be incorporated into the model.

10. Selection of Measures of Effectiveness (MOE)

The main goals of this study are as follows:

1. Complete a traffic level of service analysis for both existing and future (2027 and 2050) conditions on the I-229 mainline, select interchanges and crossroads.
2. Complete a safety analysis of I-229 mainline, interchanges, and crossroads.
3. Identify locations on I-229 not in compliance with current level of service standards under both the current and forecasted future traffic conditions, level of service requirements of LOS ' C '.
4. Conduct interchange options feasibility study on the Exit 6 interchange as required by the scope of work.
5. Create final products for use by the SDDOT which will guide the Department in the implementation of recommended improvements that will maximize the efficiency of the system.

To satisfy the study objective, the following MOEs will be used to evaluate and compare the alternatives:

- Signalized Intersections: LEVEL OF SERVICE and INDIVIDUAL MOVEMENT DELAY
- Freeway Segments, Ramp Junctions, and Weave Areas: LEVEL OF SERVICE
- Arterial Corridor Segments: LEVEL OF SERVICE, SPEED, and DELAY
- Ramp Terminal Intersections: LEVEL OF SERVICE and INDIVIDUAL MOVEMENT DELAY plus ORIGIN-DESTINATION (OD) LOS

11. FHWA Interstate Access Modification Policy Points

An Interchange Modification Justification Report (IMJR) will be developed for the I-229 Exit 6 interchange in accordance with section 3.5.3 of FHWA's Interstate System

Access Informational Guide and the May 22, 2017, FHWA Policy on Access to the Interstate System.

12. Environmental Scan

Preliminary environmental investigation will be conducted to provide a bridge between the Interchange Justification Report and the NEPA decision document. The purpose of the scan document is to identify potential resources and alternatives early in the planning process to avoid fatal flaws and to consider sensitive environmental, community and economic resources.

In order to be efficient with environmental studies and avoid situations where re-work is necessary due to changing study findings from the traffic or concept design portions of work, the majority of environmental scan field work will be conducted after preliminary findings from the IMJR process are developed and vetted by the SAT. This should not prevent coordination with partner agencies and similar foundational components of the scan process.

The scan tasks will include:

- Determine environmental study area
- Provide public and agency coordination
- Prepare and distribute tribal consultation letters
- Coordinate landowner permission for site surveys
- Evaluation of project independent utility and termini
- Develop project purpose and need
- Document and screen alternatives
- Identify resources and the alternatives' influence on each
- Evaluate environmental justice impacts
- Evaluate wetland and waterway impacts
- Evaluate cultural resources impacts
- Evaluate bicyclist, pedestrian, and recreational impacts
- Evaluate Section 4(f) and 6(f) impacts
- Evaluate economic resources impacts
- Evaluate noise impacts
- Evaluate floodplain impacts
- Evaluate vegetation, fish, and wildlife impacts
- Evaluate threatened and endangered species impacts
- Evaluate regulated materials impacts
- Evaluate air and water quality impacts
- Evaluate impacts to social environment, visual quality and aesthetics, farmland, public facilities, invasive species, and construction.
- Evaluate indirect and cumulative impacts
- Develop potential mitigation strategies
- Coordinate with the NEPA action determination
- Prepare an environmental scan document

13. Deviations/Justifications

No deviations from standards are currently known. Deviations required will be documented through amendments to this document prior to proceeding.

14. Traffic Variables for Design

The following traffic variables for design will be determined for use in future design as part of this study:

- Average Annual Daily Traffic for the year of construction (AADT2027)
- Average Annual Daily Traffic for the future year (AADT2050)
- Design Hour Volume, $30^{\text {th }}$ highest hour of the year (DHV)
- Direction Distribution in the predominate direction of travel (D)
- Truck Percentage of DHV (T DHV)
- Truck Percentage of AADT (T ADT)
- Design speed(s) (V)

These variables will be determined for the following:

- I-229 Mainline
- Exit 6 off-ramps
- Exit 6 on-ramps
- $10^{\text {th }}$ Street
- Any other I-229 cross-street impacted by construction

15. Conclusion

All sections contained in this document will guide the traffic data collection and traffic assessment for this study.

Appendix B - Traffic Forecast Memo

DRAFT MEMORANDUM

TO: Steve Gramm South Dakota Department of Transportation
FROM: Chase Cutler, HR Green, PE, PTOE
DATE: January 19, 2021
RE: I-229 Exit 6 (10th Street) Interchange Study - Traffic Forecast Memo SD DOT Project Number: PL0194(98) P, PCN 07P7

This technical memorandum provides the future year traffic forecast methodology developed for the I-229 Exit 6 Interchange Study. The project area includes mainline I-229 between Exit 5 and Exit 7, as well as adjacent intersections along the corridors of Rice Street, $6^{\text {th }}$ Street, $10^{\text {th }}$ Street, $12^{\text {th }}$ Street, $18^{\text {th }}$ Street, Southeastern Avenue, and $26^{\text {th }}$ Street in Sioux Falls, South Dakota.
TABLE OF CONTENTS
Introduction 2
Travel Demand Model 2
Future Year ADT Forecasts 3
Future Year Peak Hour Volumes 4
Interim Year ADT Forecasts 4
Interim Year Peak Hour Volumes 4
Summary 4

INTRODUCTION

As part of the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Modification Study in the City of Sioux Falls, South Dakota, traffic forecasts were completed. The study area limits extend north/south along I-229 from Exit 5 ($26^{\text {th }}$ Street) to Exit 7 (Rice Street), and east/west along $10^{\text {th }}$ Street from Jessica Avenue to the signalized Hy-Vee entrance. Additional corridors within the study limits include:

- $26^{\text {th }}$ Street form Van Eps Avenue to Southeastern Avenue,
- $18^{\text {th }}$ Street from Southeastern Avenue to Cleveland Avenue,
- $12^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue,
- $6^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue, and
- Rice Street from Lowell Avenue to Bahnson Avenue.

As part of the study, the Average Daily Traffic (ADT) and peak hour traffic volume projections have been prepared for the 2027 Year of Project Completion and 2050 Planning Horizon Year. Existing turning movement volumes and output from the Sioux Falls MPO Travel Demand Model (TDM) were used to estimate the peak hour traffic volumes. The existing traffic volumes, established from the most recent available data which included mainline, ramp, and intersection counts, are documented in the previously submitted Existing Conditions technical memorandum. Using straight-line growth, interim year traffic forecasts were developed for the 2027 Year of Project Completion and 2050 Planning Horizon Year traffic volume conditions. The purpose of this memorandum is to document the process used to develop the projected volumes and to present the resulting values used for the analysis and assessment of traffic conditions.

TRAVEL DEMAND MODEL

The Sioux Falls Metropolitan Planning Organization (SFMPO) maintains a computerized travel demand model (TDM), using Cube Voyager software, for estimating future year traffic. In the model, the Sioux Falls metropolitan area is divided into smaller transportation analysis zones (TAZs), each of which includes information such as existing and future population, household size, number of vehicles, employment, and other socioeconomic data. The future land use for each TAZ (which will determine the future population and employment) is based on the plans in the area. The primary model outputs used for this study were the 2018 base model and 2045 projection year model average daily traffic (ADT) for each link in the network.

Data was retrieved from the SFMPO TDM for each interstate mainline, ramp, interchange crossroads and corridors within the study area. Figure 1 shows the project study area.

Figure 1: Study Area

FUTURE YEAR ADT FORECASTS

In order to evaluate the existing infrastructure under future traffic conditions, the estimated 2045 ADT volumes were provided by the Sioux Falls MPO Travel Demand Model. These forecasted volumes accounted for localized traffic growth, changes in traffic patterns, and any planned interchange improvements. The estimated ADT was provided for the Interstate mainline and crossroad corridors, as described earlier in this document. In order to determine the traffic growth within the study area to estimate 2050 traffic volumes, the 2018 base year ADT was also provided in the travel demand model. Growth factors were developed from the TDM data and applied to the existing traffic volume data to develop the 2050 ADT forecast.

FUTURE YEAR PEAK HOUR VOLUMES

The estimated ADT volumes for the 2050 Planning Horizon Year were used in the development of the morning (AM) and afternoon (PM) peak hour volumes. The peak hour volumes were later used for the traffic analysis to assess the level of operations for freeway sections and intersections within the study corridor.

Utilizing existing peak hour traffic data along with projected future year and base year ADT volumes, a multi-step process was used to obtain peak hour traffic counts for the planning horizon year condition. Growth factors developed from the TDM data were applied to the existing traffic volume data to develop the 2050 Planning Horizon Year peak hour traffic movement volumes. This output was compared against K factors developed for the AM and PM period at each location to verify the accuracy of growth and adjustments were made where necessary. The peak hour volumes between intersections were then smoothed and balanced to within five vehicles. The peak hour volumes between interchange ramps were smoothed and balanced to remove any vehicle flow variability. The resulting output was the 2050 Planning Horizon Year's peak hour turning volumes for the no build condition.

Table 1 and Table 2 show the 2050 peak hour traffic forecast volumes.

INTERIM YEAR ADT FORECASTS

In order to evaluate the existing infrastructure under interim year traffic conditions, straight-line growth rates between the existing year ADT volumes and the estimated 2050 ADT volumes were calculated and the interim year traffic volumes were interpolated. The 2027 Year of Project Completion daily traffic forecast was developed and carried forward to approximate the peak hour volumes.

INTERIM YEAR PEAK HOUR VOLUMES

The estimated 2027 Year of Project Completion morning (AM) and afternoon (PM) peak hour volumes were developed by process of interpolation using straight-line growth assumptions based on the existing year and future year 2050 traffic volumes. The peak hour volumes were later used for the traffic analysis to assess the level of operations for freeway sections and intersections within the study corridor.

Table 3 and Table 4 show the 2027 peak hour traffic forecast volumes.

SUMMARY

The traffic forecast methodology used for the I-229 Exit 6 (10 ${ }^{\text {th }}$ Street) Interchange Modification Study provided acceptable results for the 2050 Planning Horizon Year traffic demand. The minor adjustments were based on general knowledge of the area and the expected population and employment growth along with observed existing conditions.

The resulting 2050 No Build traffic forecast produced from the procedures described within this memorandum are depicted in Figure 2 and Figure 3. The resulting 2027 No Build traffic forecast produced from straight-line growth interpolation is depicted in Figure 4 and Figure 5.

I-229 Exit 6 (10th Street) Interchange Study - Traffic Forecast Memo
January 19, 2021
Page 5
Table 1: 2050 Interstate and Ramp Traffic Volume Projections

	Northbound 1-229												
	1-229	Exit 5			1-229	Exit 6			1-229	Exit 7			1-229
Time	NB4	5R1	NB55	5R2	NB5	6R1	NB66	6R2	NB6	7R1	NB77	7R2	NB7
7:15	840	135	650	110	835	245	645	210	770	130	675	130	760
7:30	1,060	195	795	130	1,015	355	740	290	935	145	830	205	970
7:45	1,180	205	895	105	1.080	350	800	240	940	135	845	190	975
8:00	880	170	645	85	785	250	590	175	690	175	565	90	610
AM Hr	3,960	705	2,985	430	3,715	1,200	2,775	915	3,335	585	2,915	615	3,315
PHF	0.84	0.86	0.83	0.83	0.86	0.85	0.87	0.79	0.89	0.84	0.86	0.75	0.85
ADJ	4.250	705	3,545	430	3,975	1.200	2.775	915	3,690	585	3,105	615	3,720
16:30	1,120	300	705	35	765	390	460	195	595	185	460	100	525
16:45	960	225	650	50	730	350	455	165	565	215	410	85	465
17:00	1,080	305	660	75	785	395	475	180	595	230	425	105	500
17:15	1,120	255	765	45	840	405	525	205	660	255	480	115	560
PM Hr	4,280	1,085	2,780	205	3,120	1,540	1,915	745	2,415	885	1,775	405	2,050
PHF	0.96	0.89	0.91	0.68	0.93	0.95	0.91	0.91	0.91	0.87	0.92	0,88	0.92
ADJ	4.335	1.085	3,230	205	3.455	1,540	1.915	745	2,660	885	1.775	405	2,180
Daily	47,672	11.259	32,150	3,297	37,692	16,525	24,691	9,786	31,269	9,155	24,661	5.260	28,112
MPO Raw	41,813	7,482	34,331	6,340	40,671	11,201	29,470	8,058	37,528	10,739	26,789	5,258	32,047
ADI	49.180	11,260	37.920	3,295	41,215	16,525	24,690]	9,735	34,475	9,155	25,320	5,260	30,580

Southbound 1-229

	1-229	Exit 7			1-229	Exit 6			1-229	Exil 5			1-229
Time	SB7	7R3	SB77	7R4	SB6	6R3	SB66	6R4	SB5	5R3	SB55	5R4	SB4
7:15	495	85	395	190	605	130	450	280	730	95	560	250	1,025
7:30	515	45	460	190	675	165	480	345	825	100	640	275	1,150
7:45	570	75	475	185	690	155	500	345	845	95	675	265	1.165
8:00	400	45	345	150	510	110	380	260	640	75	500	195	865
AM Hr	1,980	250	1,675	715	2,480	560	1,810	1,230	3,040	365	2,375	985	4,205
PHF	0.87	0.74	0.88	0.94	0.90	0.85	0.91	0.89	0.90	0.91	0.88	0.90	0.90
AD.	1,905	250	1.655	715	2.370	560	1.810	1.230	3,040	365	2,675	985	3.660
16:30	935	110	800	160	1,015	210	765	335	1,130	120	915	195	1,275
16:45	925	140	755	130	940	215	680	340	1,040	195	685	165	990
17:00	1,045	150	865	175	1,100	225	830	460	1,310	180	985	205	1,370
17:15	950	140	775	120	955	225	685	460	1.140	235	715	170	1,030
PM Hr	3,855	540	3,195	585	4,010	875	2,960	1,595	4,620	730	3,300	735	4,665
PHF	0.92	0.90	0.92	0.84	0.91	0.97	0.89	0.87	0.88	0.78	0.84	0.90	0.85
ADI	3,790	540	3.250	585	3.835	875	2.960	1,595	4.555	730	3,825	735	5,560

Daily	29,750	4,359	24,396	7,093	33,114	7,576	24,101	16,579	40,547	4,824	31,864	10,544	51,471
MPO Raw	34,087	5,763	28,324	8,283	36,607	10,756	25,851	13,095	38,946	2,852	36,094	6,084	42,178
ADI	28,940	4,360	24,580	7,095	31,675	7,575	24,100	16,580	40,680	4,825	35,855	10,545	46,400

I-229 Exit 6 (10th Street) Interchange Study - Traffic Forecast Memo
January 19, 2021
Page 6
Table 2: 2050 Arterial Traffic Volume Projections

Intersection	Int. \#	Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
10th St at Jessica Ave	1	7:15	155	0	50	0	0	0	0	985	60	30	1905	0	3185
10th St at Lowell Ave	2	7:15	15	15	55	90	20	35	15	1045	10	55	1880	50	3285
10 th St at Conklin Ave	3	7:15	0	0	170	0	0	10	0	1180	10	0	1975	10	3355
10 th St at 1-229 SPUI	4	7:15	620	0	580	225	0	335	155	660	535	695	1030	760	5595
10th St at XX	5	7:15	0	0	0	0	0	0	0	0	0	0	0	0	0
10th St at Blaine Ave	6	7:15	0	0	10	0	0	0	0	1415	50	0	2485	0	3960
10th St at Cleveland Ave	7	7:15	295	315	30	90	180	340	235	1050	140	35	1850	115	4675
10th St at Hyvee	8	7:15	10	5.	5	30	5	65	100	1045	25	20	1925	90	3325
26th St at Van Eps Ave	9	7:15	5		10	25	5	15	5	450	10	20	885	10	1440
26th St at Yeager Rd	10	7:15	25	5	55	10	5	10	5	435	10	125	890	10	1585
26th St at 1-229 SB Ramp	11	7:15	155	0	210	0	0	0	0	415	85	900	870	0	2635
26th St at I-229 NB Ramp	12	7:15	190	0	515	0	0	0	0	510	115	315	1580	0	3225
26 th St at Southeastern Ave	13	7:15	525	1200	90	110	205	75	80	820	125	40	1295	325	4890
26th St at Cleveland Ave	14	7:15	45	65	30	60	10	105	55	940	25	15	1510	85	2945
Rice St at Lowell Ave	15	7:15	60	0	90	0	0	0	0	425	25	30	1150	0	1780
Rice St at 1-229 SB Ramp	16	$7: 15$	0	0	0	155	0	95	170	345	0	0	1085	545	2395
Rice St at 1-229 NB Ramp	17	7:15	300	355	155	170	40	375	40	210	250	60	955	220	3130
Rice St at Bahnson Ave	18	7:15	10	0	30	5	0	35	45	485	10	20	1185	15	1840
18 th St at Southeastern Ave	19	7:15	1375	190	40	5	85	25.	15	175	210	25	395	15	2555
18th St at Cleveland Ave	20	7:15	55	160	5	25	115	100	40	100	25	20	310	65	1020
12 th St at Lowell Ave	21	7:15	5	45	20	35	15	10	10	175	5	5	495	40	860
12 th St at Cleveland Ave	22	7:15	160	415	10	35	200	35	25	120	20	25	340	75	1460
6 th 5t at Lowell Ave	23	7:15	15	10	15	5	20	35	10	530	20	45	1075	5	1785
6 th St at Cleveland Ave	24	7:15	140	195	300	160	195	110	55	435	80	380	900	270	3220

Intersection	Int. \#	Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL.
10th St at Jessica Ave	1	16:30	65	0	60	0	0	0	0	2060	105	65	1460	0	3815
10th St at Lowell Ave	2	16:30	10	30	70	180	55	20	30	2115	20.	180	1525	100	4335
10th St at Conklin Ave	3	16:30	0	0	90	0	0	25	0	2340	25	0	1780	20	4280
10 th St at 1-229 SPUI	4	16:30	535	0	1005	595	0	280	320	1245	865	730	985	425	6985
10th St at XX	5	16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
10 th St at Blaine Ave	6	16:30	0	0	15	0	0	0	0	2760	85	0	2140	0	5000
10th St at Cleveland Ave	7	16:30	230	300	70	235	345	220	340	2045	390	40	1690	185	6090
10 th St at Hyvee	8	16,30	30	10	20	100	5	90	185	2080	85	25	1795	80	4505
26 th St at Van Eps Ave	9	16:30	5	5	5	10		15	10	575	5	5	605	15	1255
26 th St at Yeager Rd	10	16:30	15	5	160	10	5	10	10	540	15	150	610	10	1540
26th St at 1-229 SB Ramp	11	16:30	150	0	580	0	0	0	0	615	95	640	620	0	2700
26th St at 1-229 NB Ramp	12	16:30	85	0	1000	0	0	0	0	1090	105	100	1175	0	3555
26 th St at Southeastern Ave	13	16:30	225	490	140	375	1050	85	120	1355	615	95	965	170	5685
26th St at Cleveland Ave	14	16:30	35	30	25	140	100	150	170	1650	50	45	1045	105	3545
Rice St at Lowell Ave	15	16:30	35	0	55	5	0	5	5	1270	100	95	740	5	2315
Rice St at 1-229 SB Ramp	16	16:30	0	0	0	445	0	95	200	1130	0	0	745	385	3000
Rice St at 1-229 NB Ramp	17	$16: 30$	250	150	100	625	55	205	105	690	780	105	675	150	3890
Rice St at Bahnson Ave	18	16:30	20	0	25	45	0	120	15	1390	10	55	790	15	2485
18th St at Southeastern Ave	19	16:30	485	155	150	20	105	15	65	610	1315	105	170	20	3215
18th St at Cleveland Ave	20	16:30	55	225	30	170	270	80	125	465	140	15	125	40	1740
12th St at Lowell Ave	21	16:30	5	25	30	95	65	15	10	700	10	15	290	20	1280
12th St at Cleveland Ave	22	16:30	90	315	40	110	465	65	95	495	210	25	190	55	2155
6 th St at Lowell Ave	23	16:30	25	35	50	10	20	35	50	1150	45	50	715	5	2190
6th St at Cleveland Ave	24	16:30	205	300	505	455	480	115	115	825	245	305	450	145	4145

I-229 Exit 6 (10th Street) Interchange Study - Traffic Forecast Memo
January 19, 2021
Page 11
Table 3: 2027 Interstate and Ramp Traffic Volume Projections

	Northbound 1-229												
	1-229		Exit 5		1-229		Exit 6		1-229		Exit 7		1-229
Time	NB4	5R1	NB55	5R2	NB5	6R1	NB66	6R2	NB6	7R1	NB77	7R2	NB7
7:15	520	110	405	110	525	125	405	140	530	70	465	95	555
7:30	660	155	495	130	640	185	465	195	645	75	570	150	710
7:45	735	165	555	105	675	185	500	160	650	70	585	140	715
8:00	545	135	400	85	495	130	370	115	475	95	390	65	450
AM Hr	2,460	565	1,855	430	2,335	625	1,740	610	2,300	310	2,010	450	2,430
PHF	0.84	0.86	0.84	0.83	0.86	0.84	0.87	0.78	0.88	0.82	0.86	0.75	0.85
AD.J	2470	565	1.905	430	2,335	625	1.710	610	2.320	310	2.010	450	2,460
16:30	695	240	440	35	480	200	290	130	410	100	315	75	385
16:45	600	180	405	50	460	180	285	110	390	115	280	65	340
17:00	670	245	410	75	490	205	295	120	410	125	295	75	365
17:15	695	205	475	45	530	210	330	135	455	135	330	85	410
PM Hr	2,660	870	1,730	205	1,960	795	1,200	495	1,665	475	1,220	300	1,500
PHF	0.96	0.89	0.91	0.68	0.92	0.95	0.91	0.92	0.91	0.88	0.92	0.88	0.91
ADI	2,625	870	1.755	205	1,960	795	1.165	495	1.660	475	1,185	300	1,485

Daily	29,620	9,025	19,975	3,295	23,650	8,570	15,490	6,485	21,540	4,870	16,985	3,900	20,625
MPO Raw													
ADI	29,380	9,025	20,355	3,295	23,650	8,570	15,080	6,485	21,565	4,870	16,695	1,900	20,595

Southbound I-229

	1-229	Exit 7			1-229	Ext 6			1-229	Exit 5			1-229
Time	SB7	7R3	SB77	7R4	SB6	6R3	SB66	6R4	SB5	5R3	SB55	5R4	SB4
7:15	365	70	290	125	420	105	310	150	460	95	350	250	635
7:30	380	40	335	125	465	130	330	185	515	100	400	275	715
7:45	420	65	350	120	475	125	345	185	530	95	425	265	725
8:00	290	40	250	100	350	90	260	140	400	75	315	195	535
AM Hr	1,455	215	1,225	470	1,710	450	1,245	660	1,905	365	1,490	985	2,610
PHF	0.87	0.77	0.88	0.94	0.90	0.87	0.90	0.89	0.90	0.91	0.88	0.90	0.90
ADJ	1,440	215	1.225	470	1.695	450	1.245	660	1.905	365	1.540	985	2.525
16:30	685	95	585	105	700	165	525	180	710	120	575	195	795
16:45	680	120	555	85	645	170	470	180	655	195	430	165	615
17:00	765	130	635	115	755	180	570	245	820	180	615	205	850
17:15	695	120	570	80	655	180	470	245	715	235	450	170	640
PM Hr	2,825	465	2,345	385	2,755	695	2,035	850	2,900	730	2,070	735	2,900
PHF	0.92	0.89	0.92	0.84	0.91	0.97	0.89	0.87	0.88	0.78	0.84	0.90	0.85
ADI	2,825	465	2.360	385	2.745	695	2.050	850	2.900	730.	2.170	735	2.905

Daily	21,825	3,765	17,895	4,670	22,810	5,990	16,600	8,805	25,440	4,825	19,990	10,545	31,980
MPO Raw													
ADI	21,720	3,765	17,955	4,670	22,625	5,990	16,635	8,805	25,440	4,825	20,615	10,545	31,160

I-229 Exit 6 (10th Street) Interchange Study - Traffic Forecast Memo
January 19, 2021
Page 12
Table 4: 2027 Arterial Traffic Volume Projections
2027 AM Turning Movements

Intersection	Int. \#	Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	E8R	WBL	WBT	WBR	TOTAL
10th St at Jessica Ave	1	7:15	115	0	40	0	0	0	0	600	45	20	1415	0	2235
10th St at Lowell Ave	2	7:15	10	10	40	65	15.	25	10	675	10	35	1275	30	2200
10th 5tat Conklin Ave	3	7:15	0	0	125	0	0	10	0	775	10	0	1340	5	2265
10 th Stat $1-229$ SPUI	4	7:15	320	0	300	180	0	270	110	490	300	350	750	495	3565
10th St at XX	5	7:15	0	0	0	0	0	0	0	0	0	0	0	0	0
10th St at Blaine Ave	6	7:15	0	0	5	0	0	0	0	935	35	θ	1600	0	2575
10th 5 t at Cleveland Ave	7	7:15	205	220	20	55	110	210	160	690	95	20	1185	60	3030
10th St at Hyvee	8	$7: 15$	10	5	5	30	5	65	90	655	15	10	1210	70	2170
26th St at Van Eps Ave	9	7:15	5	0	5	25	5	15	5	365	10	20	805	5	1265
26th St at Yeager Rd	10	7:15	25	5	55	10	5	10	5	400	5	120	730	5	1375
26 th St at 1-229 SB Ramp	11	7:15	155	0	210	0	0	0	0	380	85	900	700	0	2430
26th St at 1-229 NB Ramp	12	7:15	150	0	415	0	0	0	0	475	115	315	1455	0	2925
26th St at Southeastern Ave	13	7:15	480	685	55	55	115	40	65	700	120	40	1250	250	3855
26th St at Cleveland Ave	14	7:15	45	35	30	55	10	100	50	740	20	10	1395	70	2560
Rice St at Lowell Ave	15	7:15	45	0	65	0	0	0	0	280	15	20	755	0	1180
Rice St at 1-229 SB Ramp	16	7:15	0	0	0	135	0	80	110	235	0	0	695	360	1615
Rice St at 1-229 NB Ramp	17	7:15	185	225	35	90	20	200	25	155	185	35	665	200	2020
Rice St at Bahnson Ave	18	7:15	10	0	30	0	0	20	25	255	5	10	850	5	1210
18th St at Southeastern Ave	19	7:15	970	85	15	5	20	25	10	100	120	25	390	15	1780
18th St at Cleveland Ave	20	7:15	55	155	5	20	95	85	35	65	20	20	305	65	925
12th 5t at Lowell Ave	21	7:15	5	35	15	30	10	10	10	140	0	5	390	35	685
12th St at Cleveland Ave	22	7.15	135	345	5	25	140	20	15	65	15	20	315	70	1170
6th St at Lowell Ave	23	7:15	10	5	10	0	15.	25	10	375	15	30	685	0	1180
6 th St at Cleveland Ave	24	7:15	85	120	190	90	100	75	40	325	60	270	620	175	2150

2027 PM Turning Movements

Intersection	Int. \#	Time	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
10th 5t at Jessica Ave	1	16:30	45	0	45	0	0	0	0	1620	80	50	870	0	2710
10 th St at Lowell Ave	2	16:30	5	25	50	135	40	15	25	1400	15	135	955	70	2870
10 th 5t at Conklin Ave	3	16:30	0	0	65	0	0	20	0	1565	20	0	1140	15	2825
10th St at $1-229$ SPUI	4	16:30	275	0	520	470	0	220	225	920	480	365	655	270	4400
10th St at XX	5	16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
10th St at Blaine Ave	6	16:30	0	0	10	0	0	0	0	1865	55	0	1290	0	3220
10 th St at Cleveland Ave	7	16:30	175	210	50	145	210	160	235	1345	300	20	950	90	3890
10th 5t at Hyvee	8	16:30	30	10	20	100	5	90	160	1365	45	15	950	65	2855
26th St at Van Eps Ave	9	16:30	5	0	0	10	0	15	5	680	5	0	500	10	1230
26th St at Yeager Rd	10	16:30	15	5	150	10	5	10	10	520	10	140	480	10	1365
26th St at 1-229 SB Ramp	11	16:30	150	0	585	0	0	0	0	590	90	640	480	0	2535
26th St at 1-229 NB Ramp	12	16:30	65	0	805	0	0	0	0	1070	105	100	1055	0	3200
26th St at Southeastern Ave	13	16:30	195	240	100	270	600	50	60	1285	525	90	910	140	4465
26th St at Cleveland Ave	14	16:30	35	25	25	135	60	135	155	1475	30	40	975	95	3185
Rice St at Lowell Ave	15	16:30	25	0	40	0	0	0	0	940	75	70	430	0	1580
Rice St at 1-229 SB Ramp	16	16:30	0	0	0	385	0	80	190	790	0	0	420	190	2055
Rice St at 1-229 NB Ramp	17	16:30	145	115	40	335	30	110	75	515	585	60	355	105	2470
Rice St at Bahnson Ave	18	16:30	20	0	25	25	0	70	5	850	5	35	390	10	1435
18th St at Southeastern Ave	19	16:30	285	95	70	20	70	15	35	530	835	30	170	20	2175
18 th St at Cleveland Ave	20	16:30	30	215	25	140	225	65	105	380	65	15	105	40	1410
12 th St at Lowell Ave	21	16:30	0	20	25	75	50	10	5	600	10	15	230	15	1055
12 th St at Cleveland Ave	22	16:30	75	265	30	80	330	45	75	395	165	20	175	50	1705
6 th St at Lowell Ave	23	16:30	20	25	40	5	15	25	40	875	35	40	420	5	1545
6 th St at Cleveland Ave	24.	16:30	125	180	310	230	245	60	85	630	185	195	290	95	2630

Appendix C - Existing Conditions Memo

Building a Better World
for All of Us ${ }^{\circ}$

DRAFT MEMORANDUM

\author{

TO: Steve Gramm South Dakota Department of Transportation
 FROM: Graham Johnson, PE (SD, MN, IA), PTOE Justin Anibas, EIT
 Chase Cutler, HR Green, PE, PTOE
 DATE:
 October 28, 2020
 | RE: | I-229 Exit 6 (10th Street) Interchange Project - Existing Conditions Memo |
| :--- | :--- |
| | SEH No. HRGSP 156524 |

}

This technical memorandum provides the findings related to the existing conditions of the I-299 Exit 6 interchange at $10^{\text {th }}$ Street. The project area includes mainline I-229 between Exit 5 and Exit 7, as well as Rice Street, $6^{\text {th }}$ Street, $10^{\text {th }}$ Street, $12^{\text {th }}$ Street, $18^{\text {th }}$ Street, Southeastern Avenue, and $26^{\text {th }}$ Street in Sioux Falls, South Dakota.

TABLE OF CONTENTS

\qquad
introduction1
Existing Roadway Network 3
Existing Interchanges 5
Traffic Data and Information 8
Traffic Operations 11
Freeway Design Criteria 20
Conclusions 23

INTRODUCTION

The South Dakota Department of Transportation (SDDOT) initiated an assessment of the existing interchange on Interstate 229 (I-229) at $10^{\text {th }}$ Street (Exit 6) to improve the safety, operations and geometric design of the interchange area.

The subject interchange is at mileage reference marker 6 on I-229, in eastern Sioux Falls, SD. The interchange is approximately six miles east/northeast of the I-29/I-229 system interchange and four miles south of the I-229/I-90 system interchange. The adjacent interchanges along I-229 are $26^{\text {th }}$ Street (Exit 5) and Rice Street (Exit 7); the interchange spacing is approximately $1-1 / 4$ mile to either side of the subject interchange.

Page 2

This location is within the Sioux Falls MPO and within the developed urban area of the city. The $10^{\text {th }}$ Street corridor is a primary commuter route between downtown and the urban/suburban residential areas throughout the Sioux Falls eastern metropolitan area.

Figure 1 shows the project area and the 24 study intersection, which includes Mainline l-229, 10 ${ }^{\text {th }}$ Street (Exit 6 Interchange), and several other roadways that cross I-229.

Figure 1 Project Location

EXISTING ROADWAY NETWORK

The existing roadway network, represented by their Federal functional classification, surrounding the project area is shown in Figure 2.

The existing major roadways within the study area include:

- I-229 - urban interstate facility, currently two continuous lanes in each direction with auxiliary lanes provided between the Exit 6 and Exit 7 interchanges.
- 2018 Average Annual Daily Traffic (AADT) ranges between 29,800 to 37,700 vehicles in the project area.
- Rice Street - urban minor arterial transitioning between a 3-lane and 4-lane roadway; west of the interstate the roadway is a 4-lane undivided facility and east of the interstate the roadway is a 3-lane facility.
- 2018 AADT ranges between 12,500 and 13,700 vehicles in the project area.
- E. $6^{\text {th }}$ Street - urban major collector transitioning between a 3-lane and 4-lane roadway; west of the interstate the roadway is a 3-lane facility and east of the interstate the roadway is a 4-lane undivided facility.
- 2018 AADT ranges between 10,200 and 15,100 vehicles in the project area.
- E. $10^{\text {th }}$ Street - urban principal arterial with a 4-lane divided roadway within the interchange area; east and west of the interchange area the roadway is a 4-lane undivided with a two-way left turn lane (TWLTL, 5 -lane).
- 2018 AADT ranges between 21,200 and 31,400 vehicles in the project area.
- E. 12 ${ }^{\text {th }}$ Street - 2-lane major urban collector roadway.
- 2018 AADT ranges between 3,400 and 4,600 vehicles in the project area.
- E. 18 ${ }^{\text {th }}$ Street - 2-lane major urban collector roadway.
- 2018 AADT ranges between 3,800 and 5,500 vehicles in the project area.
- E. 26th Street - urban minor arterial varying between 3-lane and 5-lane sections. 26th Street is being reconstructed to a 4-lane divided roadway through the I-229 interchange as part of an on-going interchange project (complete in 2020).
- 2018 AADT ranges between 12,400 and 28,500 vehicles in the project area.
- N. Cleveland Avenue -urban major collector roadway transitioning between a 2-lane and 3-lane facility.
- 2018 AADT ranges between 6,400 and 7,100 vehicles in the project area.
- S. Cleveland Avenue - 2-lane urban major collector roadway.
- 2018 AADT ranges between 5,400 and 6,400 vehicles in the project area.
- S. Southeastern Avenue - urban minor arterial transitioning between a 3-lane and 4-lane roadway.
- 2018 AADT ranges between 8,500 and 12,700 vehicles in the project area.
- As part of the 2020 reconstruction on $26^{\text {th }}$ Street, the Southeastern Avenue approaches to $26^{\text {th }}$ Street are being expanded to include dual left turn lanes, two through lanes, and a right turn lane.
- N. Lowell Avenue - 2-lane urban local roadway.
- S. Lowell Avenue - 2-lane urban local roadway.

Figure 2 Existing Federal Functional Classification

EXISTING INTERCHANGES

The following is a description and aerial photograph of the four existing interchanges within the entire project study area.

$\mathrm{I}-229$ at $26^{\text {th }}$ Street (Exit 5)

The interchange is wrapping up a major reconstruction project in 2020. The interchange was reconstructed to a standard folded diamond configuration as shown in Figure 3. The northbound I-229 ramp connections were widened near the ramp terminal intersection, but are unchanged near the ramp gores. The southbound ramp configuration was entirely reconfigured.

Yeager Road was realigned to connect to 26th Street west of its current location and will no longer be related to the interchange. A new southbound exit loop ramp will directly tie into 26 th Street; this new ramp terminal intersection is essentially in the same location as the existing 26th Street/Yeager Road intersection. The first intersection to the west will be approximately 400 feet away at the new Yeager Road intersection.
26th Street was widened and additional turn lanes were provided at the ramp terminal intersections; both are controlled by traffic signals.

The 26th Street at Yeager Road intersection will be under minor street stop control. The expansion of 26th Street will extend to the east and include significant reconfiguration of the intersection with Southeastern Avenue. The first intersection to the east will be approximately 300 feet away at a business driveway, with the first major intersection approximately 1,250 feet away at Southeastern Avenue.

Figure 3 Existing I-229 at $\mathbf{2 6}^{\text {th }}$ Street Interchange (2020)

I-229 at 10 ${ }^{\text {th }}$ Street (Exit 6)

This service interchange along I-229 is a Single Point Urban Interchange (SPUI) as shown in Figure 4. All ramp connections are currently single lane ramps at the merge and diverge locations with I-229, with full auxiliary lanes provided between the adjacent interchange to the north. At this interchange, $10^{\text {th }}$ Street travels over I-229 on a single bridge structure.

The ramp connections are a SPUI design that is currently controlled by a single traffic signal. The nearest intersection west of the interchange is approximately 275 feet at Conklin Avenue which is a Right-In/Right Out (RI/RO) access, the nearest full access intersection is approximately 600 feet away at Lowell Avenue (traffic signal control). The nearest intersection east of the interchange is approximately 375 feet at Blaine Avenue which is a Right-In/Right Out (RI/RO) access, the nearest full access intersection is approximately 700 feet away at Cleveland Avenue (traffic signal control).

Figure 4 Existing l-229 at $\mathbf{1 0}^{\text {th }}$ Street Interchange

Page 7

1-229 at Rice Street (Exit 7)

This service interchange along I-229 is a folded diamond configuration to the north as shown in Figure 5. All ramp connections are currently single lane ramps at the merge and diverge locations with I-229, with full auxiliary lanes provided between the adjacent interchange to the south and north. At this interchange, $1-229$ travels over Rice Street on two separate bridge structures.

Both ramp terminal intersections are currently controlled by traffic signals with approximately 1,000 feet between the intersections. The south leg of the eastern ramp terminal (northbound l-229) is Cleveland Avenue. The nearest intersection west of the interchange is approximately 450 feet away at Lowell Avenue (minor street stop control), the nearest intersection to the east is approximately 2,250 feet away at Bahnson Avenue (minor stop control).

Figure 5 Existing l-229 at Rice Street Interchange

TRAFFIC DATA AND INFORMATION

The data used to create this document came from the participating agencies including the SDDOT and the City of Sioux Falls. The most recent data available was used in the analysis including traffic counts, crash data, and signal timing data.

Traffic Volumes

Due to multiple conditions in the project area, traffic volumes and turning movement volumes were not able to be collected as part of this study. The following two reasons limited the data collection at the time of this study:

- The current health pandemic (Covid 19) and associated travel reductions throughout the state.
- Construction detours corresponding to the $26^{\text {th }}$ Street interchange reconstruction.

However, there have been several recent studies as well as other miscellaneous turning movement counts that were provided and utilized for this project. Table 1 lists all the study intersections and the most recent count year provided; the SDDOT provided $2018 \mathrm{l}-229$ mainline and ramp data for the project area.

Table 1 Intersection Count Information

Int \#	Main Street	Cross Street	Count Year(s)
1	$10^{\text {TH }}$ Street	Jesiica Avenuve	2017
2	$10^{\text {TH }}$ Street	Lowell Avenue	$2017 / 2015$
3	$10^{\text {TH }}$ Street	Conklin Avenue	2013
4	$10^{\text {TH }}$ Street	l-229 SPUI	$2019 / 2016$
6	$10^{\text {TH }}$ Street	Blaine Avenue	2013
7	$10^{\text {TH }}$ Street	Cleveland Avenue	2019
8	$10^{\text {TH }}$ Street	HyVee Entrance	2018
9	$26^{\text {TH }}$ Street	Van Eps Avenue	2018
10	$26^{\text {TH }}$ Street	Yeager/Frederick Avenue	2016
11	$26^{\text {TH }}$ Street	I-229 SB Ramp Terminal	2018
12	$26^{\text {TH }}$ Street	I-229 NB Ramp Terminal	2018
13	$26^{\text {TH }}$ Street	Southeastern Avenue	2018
14	$26^{\text {TH }}$ Street	Cleveland Avenue	2015
15	Rice Street	Lowell Avenue	2018
16	Rice Street	I-229 SB Ramp Terminal	2018
17	Rice Street	I-229 NB Ramp Terminal	2020
18	Rice Street	Bahnson Avenue	2018
19	$18^{\text {TH }}$ Street	Southeastern Avenue	2018
20	$18^{\text {TH }}$ Street	Cleveland Avenue	2020
21	$12^{\text {TH }}$ Street	Lowell Avenue	$2019 / 2016$
22	$12^{\text {TH }}$ Street	Cleveland Avenue	2015
23	$6^{\text {TH }}$ Street	Lowell Avenue	$2018 / 2015$
24	$6^{\text {TH }}$ Street	Cleveland Avenue	

Notes: 2019 Data along $10^{\text {th }}$ Street includes detour traffic from $26^{\text {th }}$ Street construction; previous counts were reviewed to blend data.
$26^{\text {th }}$ St at Yeager/SB Ramp 2018 data was modified to match new conditions.

Page 9

All historical traffic count data was factored up to an existing 2021 estimate based on the existing count year, historical average annual daily traffic (AADT), and balancing between study intersections.

Figure 6 represents the study intersection count locations. The existing 2021 freeway traffic counts and intersection turning movements at all study intersections can be found in the attached Figures A1-A3.

Figure 6 Intersection Count Locations

Origin Destination Study

An origin-destination (OD) study was previously developed for I-229 during the interchange study for Exit 3 and Exit 4. As the current Exit 5 construction is presently creating unrealistic patterns due to detouring traffic, updating the OD study was not considered feasible and therefore the previous results will be utilized and described below.

During the Exit 3 and Exit 4 study, data from a 3rd party vendor platform, StreetLight Data Incorporated was used. The platform uses global positioning system (GPS) information and location based service (LBS) information from both connected vehicles (cars and trucks) and cell phones.

A full OD study was conducted along I-229 between I-29 and I-90, including all nine service interchanges between the two system interchanges. The full results can be found in the l-229 Exits 3 \& 4 Interchange Study: OriginDestination Study memorandum, as part of the Exit 3 and Exit 4 Interstate Modification Justification Reports (IMJR).

The platform allowed for 1-year worth of data to be pulled for the entire I-229 corridor; a total of 375,000 personal LBS trips and 265,000 commercial GPS trips were captured along the corridor. The data is sorted out by day of the week and grouped by hours throughout the day. For the OD analysis, the weekday trips during the AM and PM peak periods, 6 am to 9 am and 3 pm to 6 pm , were tabulated for use in this study evaluation.

For this analysis, the information regarding the weaving percentages between the study interchanges was utilized in the operational weaving analysis. Table 2 shows the results of the four weaving segments within this interchange project area; the percentages are of the entrance ramp volumes entering l-229.

Table 2 Origin Destination Information

Ramp Weaving Segment		Avg Weekday 24-hr Data	Avg Weekday AM Peak	Avg Weekday PM Peak
NB I-229	Exit 5 to Exit 6	22%	12%	31%
NB I-229	Exit 6 to Exit 7	17%	13%	22%
SB I-229	Exit 7 to Exit 6	23%	14%	24%
SB I-229	Exit 6 to Exit 5	11%	9%	11%

TRAFFIC OPERATIONS

A traffic operations study was conducted for the project area using the estimated 2021 traffic volumes. A total of twenty-three existing intersections and twelve ramp junctions were analyzed within the interchange study area.

Analysis techniques included evaluation of operational capacity using the Highway Capacity Manual (HCM), 6th Edition, techniques via the Highway Capacity Software (HCS) Version 7.

It should be noted that the HCM does not recommend using the merge and diverge analysis procedures when a full length auxiliary lane is provided; the methodologies were derived from acceleration and deceleration lengths of 1,500 feet or less. Page 14-30 of the HCM 6th Edition says:

- The freeway segment downstream of the on-ramp or upstream of the off-ramp is simply considered to be a basic freeway segment with an additional lane.
- The case of an on-ramp followed by an off-ramp lane drop may be a weaving segment and should be evaluated with the procedures of Chapter 13, Freeway Weaving Segments.

Therefore, for this analysis both the basic lane and weaving segment analysis were conducted on all freeway mainline segments that include full auxiliary lanes between ramp connections.

Level of Service Criteria

The freeway and arterial Level of Service (LOS) criteria presented in the following tables were used to evaluate the traffic operations in the study area; the information is from the SDDOT Road Design Manual (Chapter 15) and based on the Highway Capacity Manual (HCM).

Table 3 Freeway - LOS Criteria

Level of Service (LOS)	Description	Density (pc/mi/n)
A	Free-flow operation	≤ 11.0
B	Reasonably free-flow operation; minimal restriction on lane changes \& maneuvers	>11.0 to 18.0
C	 other maneuvers	>18.0 to 26.0
D	Speed decline with increasing flows; significant restriction on lane changes \& other maneuvers	>26.0 to 35.0
E	Facility operates at capacity; very few gaps for lane changes \& other maneuvers; frequent disruptions \& queues	>35.0 to 45.0
F	Unstable flow; operational breakdown	>45.0

[^0]Table 4 Signalized Intersection Control - LOS Criteria

Level of Service (LOS)	Description	Signalized Delay (sec/veh)
A	Very minimal queueing; excellent corridor progression	≤ 10.00
B	Some queuing; good corridor progression	>10.0 to 20.0
C	Regular queueing; not all demand may be serviced on some cycles (cycle failure)	>20.0 to 35.0
D	Queue lengths increased; routine cycle failures	>35.0 to 55.0
E	Majority of cycles fail	>55.0 to 80.0
F	Volume to capacity ratio approaches 1.0; very long queues, almost all cycles fail	>80.0

Source: SDDOT Road Design Manual (Table 15-5)
Table 5 All-Way Stop \& Two Way Stop Intersection Control - LOS Criteria

Level of Service (LOS)	Description	Un-signalized Delay (sec/veh)
A	Queuing is rare	≤ 10.00
B	Occasional queueing	>10.0 to 15.0
C	Regular queueing	>15.0 to 25.0
D	Queue lengths increase	>25.0 to 35.0
E	Significant queueing	>35.0 to 50.0
F	Volume to capacity ratio approaches 1.0; very long queues	>50.0

Source: SDDOT Road Design Manual (Table 15-6 and 15-7)
The SDDOT has established a minimum of LOS C on urban interstate highway corridors. At ramp terminal intersections the overall intersection must be at a LOS C or better; however, individual movements may operate at a LOS D.

The City of Sioux Falls has established a minimum of LOS D on arterial signalized intersections and any intersection movement at LOS E or better. Two way stop control intersections should have the minor approaches operate at a LOS D or better.

Available storage for turning vehicles plays an important role in the operations of an intersection. The HCM software does not properly handle lane blockage conditions, providing LOS results that are not reflective of actual operations. The HCM methodologies provide a "Queue Storage Ratio" (QSR) which is the maximum stacking of queued vehicles (SDDOT recommends the $95^{\text {th }}$ percentile queue) divided by the available storage length provided for the movement. If the QSR is above 1.0, it represents a queue that is spilling outside of the available storage and blocking other movements at the intersection. At any intersection where the QSR is above 1.0 for a movement, it is SDDOT preference to state the intersection has failing operations, regardless of the overall delay at the intersection. The volume to capacity (v/c) ration should also be less than 1.0 for all movements.

Existing Operations

The project area includes 3 service interchanges with 12 ramp junctions and 7 mainline segments; however some of the ramps have auxiliary lanes between adjacent interchanges and therefore limit the number of merge and diverge analysis locations.

The summation of the existing traffic operations analysis show that mainline I-229 operates acceptably. All existing ramp junctions and weaving segments operate at a LOS C or better during the AM and PM peak hours. Results for the individual segments and ramp junctions of l-229 in the project area are shown in Table 6 as well as Figure 7.

Table 6 Existing (2021) Freeway Operations Summary

Road	Description	Analysis Type	AM Peak LOS	PM Peak LOS
$\frac{\underset{\sim}{N}}{\underset{\sim}{\sim}}$	NB I-229: southwest of Exit 5	Basic	B	B
	NB I-229: between Exit 5 Exit and Entrance Ramps	Basic	B	B
	NB I-229: Exit 5 Entrance Ramp	Merge	C	B
	NB I-229: between Exit 5 and Exit 6	Basic	C	B
	NB 1-229: Exit 6 Exit Ramp	Diverge	B	A
	NB I-229: between Exit 6 Exit and Entrance Ramps	Basic	B	A
	NB I-229: between Exit 6 and Exit 7	Basic	B	A
		Weave	B	A
	NB I-229: between Exit 7 Exit and Entrance Ramps	Basic	B	A
	NB I-229: north of Exit 7	Basic	B	A
$\frac{\underset{\sim}{N}}{\underset{\sim}{\infty}}$	SB I-229: north of Exit 7	Basic	A	B
	SB I-229: between Exit 7 Exit and Entrance Ramps	Basic	A	C
	SBI-229: between Exit 7 and Exit 6	Basic	A	B
		Weave	B	B
	SB I-229: between Exit 6 Exit and Entrance Ramps	Basic	A	B
	SB I-229: Exit 6 Entrance Ramp	Merge	B	B
	SB I-229: between Exit 6 and Exit 5	Basic	B	C
	SB I-229: Exit 5 Exit Ramp	Diverge	B	C
	SB I-229: between Exit 5 Exit and Entrance Ramps	Basic	B	B
	SB I-229: southwest of Exit 5	Basic	B	B

Of the five total LOS C segments or junctions, the 4-lane section of I-229 between Exit 5 and Exit 6 includes 4 of the LOS C results. Currently the basic lanes have LOS C directionally with northbound in the AM peak hour and southbound in the PM peak hour. With the basic lane approaching capacity, the northbound merge from Exit 5 and the southbound diverge to Exit 5 both currently operate at a LOS C. The ramps merge and diverge from Exit 6 are not an issue on this segment as they both have long acceleration and deceleration lanes provided.

The southbound direction between Exit 6 and Exit 5 in the PM peak hour is currently approaching the LOS C/D threshold; it is within approximately 300 vehicles or approximately 10% of the volume threshold to be LOS D.

The final LOS C is located along southbound I-229 between the Exit 7 ramps, this location is just over the density criteria for LOS B/C and should continue to operate well in the short term.

Figure 7 Existing (2021) Freeway Summary

I-229 Exit 6 (10th Street) Interchange Project - Existing Conditions Memo
October 28, 2020
Page 15

For the arterial intersection analysis, a total of 23 study intersections were included in the analysis, this includes 16 traffic signals, 5 minor stop control intersections, and 2 right-in/right-out (RI/RO) intersections. Results for the intersection analysis in the project area are shown in Table 7 as well as Figure 8.

Table 7 Existing (2021) Arterial Intersection Operations Summary

Major Roadway	Intersecting Roadway	Control Type	AM Peak Hour					PM Peak Hour				
			Approach				INT.	Approach				INT.
			EB	WB	NB	SB		EB	WB	NB	SB	
Rice Street	Lowell Avenue	Minor Stop	A	A	C	A	C	A	A	D	C	D
Rice Street	I-229 SB Ramp Terminal	Signal	A	A	NA	D -	B -	B	B	NA	D -	C -
Rice Street	I-229 NB Ramp Terminal	Signal	B	B	D	C	C	B	B	C	E -*	C -*
Rice Street	Bahnson Avenue	Minor Stop	A	A	C	C	C	A	A	E	D	E
$6^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	C	C	C	A	B	F	E	F
$6{ }^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	C	C	B	D	C	C	C	C
$10^{\text {TH }}$ Street	Jessica Avenue	Signal	A	A	E*	NA	A*	A	A	E-	NA	A-
$10^{\text {TH }}$ Street	Lowell Avenue	Signal	A	A	D	D	A	B	A*	D	D	B*
$10^{\text {TH }}$ Street	Conklin Avenue	RI/RO	--	--	C	C	C	--	--	C	B	C
$10^{\text {TH }}$ Street	I-229 SPUI	Signal	D -	C	D	D	D -	F	F	C	D	F
$10^{\text {TH }}$ Street	Blaine Avenue	RI/RO	--	--	B	NA	B	--	--	C	NA	C
$10^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	C	D*	E	C*	B	C	D*	E*	C*
$10^{\text {TH }}$ Street	HyVee Entrance	Signal	A	A	D	D	A	A	A	D	D*	B*
$12^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	C	C	C	A	A	C	F	F
$12^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	B	B	B	C	B	B	B	B
$18^{\text {TH }}$ Street	Southeastern Avenue	Signal	D	D	F	E	F	C	B	D	E	D
$18^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	B	B	B	B	B	B	C	B
$26^{\text {TH }}$ Street	Van Eps Avenue	Signal	A	A	D	D	A	A	A	E	E	A
$26^{\text {TH }}$ Street	Yeager/Frederick Avenue	Minor Stop	A	A	C	E	E	A	A	D	F	F
$26^{\text {TH }}$ Street	I-229 SB Ramp Terminal	Signal	C	A*	C	NA	A*	D*	A	B	NA	C*
$26^{\text {TH }}$ Street	I-229 NB Ramp Terminal	Signal	A	C	C	NA	C	C	A	C	NA	C
$26^{\text {TH }}$ Street	Southeastern Avenue	Signal	B	B	D*	E	C*	D	D	D	E	D
$26^{\text {TH }}$ Street	Cleveland Avenue	Signal	A	C	D	D	C	A	C	E	D*	C*

Notes:

- "n/a" denotes an approach that does not exist at the intersection. "-" denotes an approach with no delay due to control type.
- Bold/Highlighted indicates a poor LOS due to LOS E/F, volume to capacity (v / c) ration >1.0, or queue storage issue.
- "*" Queue storage ratio (QSR) greater than 1.0 for at least one movement resulting in entire intersection considered failing.
- " - " At least one movement is deemed failing resulting in entire intersection considered failing (not noted if intersection is LOS F).

Under the existing conditions, there are fifteen intersections that currently have failing traffic operations in at least one of the peak periods; these conditions are due to volume to capacity issues, queue storage issues, or delay issues. There is an additional single intersection with an approach that is failing yet the overall intersection is acceptable. Therefore, seven intersections currently have acceptable operations in both peak periods.

Along Rice Street, both ramp terminal intersections operate at a LOS C or better; however, both intersections have at least one movement that fails. The southbound left turns at the southbound ramp operates at a LOS E, the southbound left at the northbound ramp operates at a LOS F with both QSR and V/C issues.

Along $6^{\text {th }}$ Street, the Lowell Avenue minor stop controlled approach have poor LOS on both the approaches to $6^{\text {th }}$ Street. $6^{\text {th }}$ Street carries a high volumes of traffic during the PM peak hour that limits gaps for Lowell Avenue traffic to enter or cross $6^{\text {th }}$ Street.

Along $10^{\text {th }}$ Street, only the I-229 SPUI intersection operates under failing conditions. At Cleveland Avenue, the southbound approach is at a LOS E in both peak hours with QSR issues, this is created by capacity issues on this approach leg. At Jessica Avenue, the northbound approach is at a LOS E in both peak hours with the overall intersection at a LOS A, this minor approach delay is created by the signal timing which provides more time for $10^{\text {th }}$ Street.

The $10^{\text {th }}$ Street at I-229 SPUI intersection currently operates under significant delays in the PM peak hour; however, the AM peak is operating at a LOS D with a movement at LOS E. The single left turn lane on all four approaches of the SPUI design create significant delays and vehicles are not served within a cycle length at the intersection.

Along $12^{\text {th }}$ Street, the Lowell Avenue southbound minor stop controlled approach has a poor LOS. $12^{\text {th }}$ Street carries a higher volumes of traffic during the PM peak hour that limits gaps for Lowell Avenue traffic to enter or cross $12^{\text {th }}$ Street.

Along $18^{\text {th }}$ Street, the Southeastern Avenue intersection currently has failing operations in the AM peak hour. The northbound left turn volume is a significant constraint that requires the intersection to operate under a split phase timing; split phase signal timings typically create longer delays for all approaches. The eastbound approach carries a high volume in the PM peak hour that requires a long green phase to serve the demands, which adds delay for all approaches.

While $26^{\text {th }}$ Street is currently under construction, the resulting design will still incur operational issues during both peak periods outside of the immediate interchange area. Three of the study intersections will have a poor approach LOS, but the overall intersection is acceptable; this includes Van Eps Avenue, Southeastern Avenue, and Cleveland Avenue. The new Yeager Avenue/Frederick Avenue intersection will operate under minor stop control; the high directional volumes along $26^{\text {th }}$ Street will limit gaps for vehicles to cross or enter the roadway and the approach will operate at a LOS F. The southbound I-229 ramp does have queue storage issues for the eastbound right turn as the storage lane is very short.

Attached to this memorandum is an HCS analysis summary table that also includes a multi-modal analysis. Most of the intersections (analysis only includes signalized intersections) have a LOS of C or better for both the pedestrian and bicycle LOS. There are 3 locations that have a poor LOS, all of which are on the ramp connection legs of the intersections.

Figure 8 Existing (2021) Arterial Summary

Crash History

A comprehensive safety analysis was conducted for the entire project area for this study. The analysis included the most recent 5 -years of crash history available from the SDDOT. This included the five calendar years of 2015 through 2019.

A detailed crash analysis was completed and documented in a separate memorandum; l-229 Exit 6 (10 th Street) Interchange Project - Safety Memo. The crash memorandum is attached to this document, however a brief summary is provided below.

The crash records were segregated into crashes for each of the study intersections and the arterial and freeway segments. The type and severity of the crashes were reviewed and crash rates and critical rates were calculated for each.

Crash severity is comprised of 5 separate types including fatal, an incapacitating injury (Severity A), a nonincapacitating injury (Severity B), a possible injury (Severity C), or a property damage only (PD) crash; wild animal hits are coded in a separate category.

Crash rates are expressed as the number of crashes per million entering vehicles (MEV) at an intersection or along a segment. The critical crash rate is a statistical value that is unique to each intersection or segment. It is based on vehicular exposure and the average crash rate for similar intersection or segment; a crash rate higher than the critical rates indicates a sustained crash problem. A critical crash rate index is calculated by dividing the crash rate by the critical rate. Any index value above 1.0 indicates a crash rate at or exceeding the critical rate.

The average crash rate for an urban freeway system, provided by SDDOT, was 1.03 crashes per MEV. The City of Sioux Falls provided the most recent average crash data, from 2015, for the varying arterial roadway and intersection control types.

A total of 1,632 crashes occurred within the entire project area during the 5 -year analysis period. A total of 400 crashes occurred along the freeway mainline or ramp connections and a total of 1,232 occurred at a study intersection or segment.

A total of 353 crashes occurred along mainline $\mathrm{I}-229,6$ segment areas that have had crash rates above the critical, these include:

- Northbound I-229 Locations:
- Mainline segment between Exit 5 and Exit 6.
- Exit 6 Diverge Area.
- Exit 7 Merge Area.
- Southbound I-229 Locations:
- Exit 7 Merge Area.
- Exit 6 Diverge Area.
- Exit 6 Merge Area.

A total of 47 crashes occurred on the I-229 ramp connections, there were 3 ramp connections from I-229 that had crash rates above the critical rate, these include:

- Northbound I-229 Entrance Ramp from $26^{\text {th }}$ Street (Exit 5).
- Northbound I-229 Exit Ramp to Rice Street (Exit 7).
- Southbound I-229 Entrance Ramp from 10 ${ }^{\text {th }}$ Street (Exit 6).

A total of 1,104 crashes occurred at study intersections within the project area. The study intersections included 23 recommended study intersections; 4 additional intersections were included as they had approximately 10 crashes during the 5 -year period. A total of 15 intersections have crash rates that exceed the critical rates, these include:

- Rice Street at the I-229 Northbound Ramp Terminal
- $6^{\text {th }}$ Street at Cleveland Avenue
- $10^{\text {th }}$ Street at Lowell Avenue
- $10^{\text {th }}$ Street at I-229 SPUI
- $10^{\text {th }}$ Street at Cleveland Avenue
- $12^{\text {th }}$ Street at Lowell Avenue
- $12^{\text {th }}$ Street at Cleveland Avenue
- $18^{\text {th }}$ Street at Southeastern Avenue
- $18^{\text {th }}$ Street at Blaine Avenue (non-study intersection)
- $18^{\text {th }}$ Street at Cleveland Avenue
- $26^{\text {th }}$ Street at Yeager Road**
- $26^{\text {th }}$ Street at I-229 Northbound Ramp Terminal**
- $26^{\text {th }}$ Street at Southeastern Avenue**
- $26^{\text {th }}$ Street at Cleveland Avenue**
- Yeager Road at I-229 Southbound Ramp Terminal**
${ }^{* *} 26^{\text {th }}$ Street/Exit 5 is currently under construction and the new design should improve safety on the corridor.
A total of 128 crashes occurred along arterial segments between intersections, a total of 22 segments were evaluated along the 7 study corridors. Only 1 segment had a crash rate higher than the critical rate.
- $\quad 12^{\text {th }}$ Street: between Lowell Avenue and Cleveland Avenue

More detailed information can be found in the attached traffic safety memorandum.

FREEWAY DESIGN CRITERIA

This section will discuss the I-229 freeway facility within the project area. The primary design principles and criteria that impact freeway operations include:

- Basic Lane Capacity
- Route Continuity
- Lane Balance
- Interchange Spacing
- Ramp Spacing

These criteria are described in the American Association of State Highway and Transportation Official's (AASHTO) Policy on Geometric Design of Highways and Streets 2011 edition. The existing design speed for $\mathrm{I}-229$ is 70 mph , with a posted speed limit of 65 mph .

Basic Lane Capacity

The basic number of lanes is defined as a minimum number of lanes designated and maintained over a significant length of a corridor, regardless of changes in traffic volumes and lane-balance. An assessment of basic lane needs is an indicator of minimum capacity requirements; it is not an indicator of the actual capacity. Table 8, below, summarizes the basic lane volumes for LOS C, LOS D and LOS E from the Highway Capacity Manual (HCM).

Table 8 Basic Lane Capacity

Free Flow Speed (mph)	Per-Lane Volume Threshold (pcphpl) / (Vehicle Density (pc/mi//n))		
	LOS C	LOS D	LOS E
75 mph	$1,750 /(26.0)$	$2,110 /(35.0)$	$2,400 /(45.0)$
70 mph	$1,690 /(26.0)$	$2,080 /(35.0)$	$2,400 /(45.0)$
65 mph	$\mathbf{1 , 6 3 0} /(\mathbf{2 6 . 0})$	$\mathbf{2 , 0 3 0} /(35.0)$	$\mathbf{2 , 3 5 0 / (4 5 . 0)}$
60 mph	$1,560 /(26.0)$	$2,010 /(35.0)$	$2,300 /(45.0)$
55 mph	$1,430 /(26.0)$	$1,900 /(35.0)$	$2,250 /(45.0)$

Source: Highway Capacity Manual $6^{\text {th }}$ Edition, Exhibit 12-4; HCM 2010, Exhibit 11-17
While the previous Table 6 shows the results of the operational analysis, this Basic Lane Capacity assessment still evaluated each mainline segment based on the higher of the AM or PM peak hour data. The following Table 9 shows the results of the analysis, all segments have enough basic lane capacity to reach a LOS C or better

Table 9 I-229 Basic Lane Assessment

Description			Existing Lane	Max Hourly Volume (AM or PM)	Basic Lane LOS	\# of Lanes for LOS C Conditions
	From	To				
$\begin{aligned} & \text { N } \\ & \stackrel{1}{N} \\ & \underset{Z}{Z} \end{aligned}$	NB I-229	26th Street Exit	3	2351	B	1.6
	26th Street Exit	26th Street Entrance	2	1637	B	1.1
	26th Street Entrance	10th Street Exit	2	2066	B	1.4
	10th Street Exit	10th Street Entrance	2	1540	B	1.1
	10th Street Entrance	Rice Street Exit	3	2085	B	1.4
	Rice Street Exit	Rice Street Entrance	2	1822	B	1.2
	Rice Street Entrance	NB I-229	3	2243	B	1.5
$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\infty} \end{gathered}$	SB I-229	Rice Street Exit	3	2611	B	1.8
	Rice Street Exit	Rice Street Entrance	2	2160	C	1.5
	Rice Street Entrance	10th Street Exit	3	2503	B	1.7
	10th Street Exit	10th Street Entrance	2	1850	B	1.3
	10th Street Entrance	26th Street Exit	2	2568	C	1.8
	26th Street Exit	26th Street Entrance	2	1831	B	1.2
	26th Street Entrance	SB I-229	3	2563	B	1.7

Route Continuity

A route continuity evaluation is used to determine if any forced lane changes are required to continue along a specific highway. A forced lane change occurs when either an established through lane is dropped at a major fork diverge or when an auxiliary lane is added to the left side of the roadway to accommodate the design of a major fork diverge and the through traffic must change lanes in order to continue.

Route continuity is currently satisfied for $\mathrm{I}-229$ in the project area; $\mathrm{I}-229$ has two continuous travel lanes in both directions which connect to both the I-29 and I-90 system interchanges.

Lane Balance

The concept of lane balance is intended to smooth traffic flow through and beyond an interchange. The AASHTO definition of lane balance is as follows:

1. At entrances, the number of lanes beyond the merging of two traffic streams should not be less than the sum of all traffic lanes on the merging roadways minus one.
2. At exits, the number of approach lanes on the highway must be equal to the number of lanes on the highway beyond the exit, plus the number of lanes on the exit, minus one. Exceptions to this principle occur at cloverleaf loop-ramp exits that follow a loop-ramp entrance and at exits between closely spaced interchanges (i.e. interchanges where the distance between the end of the taper of the entrance terminal and the beginning of the taper of the exit terminal is less than $1,500 \mathrm{ft}$). In these cases, the auxiliary lane may be dropped in a single-lane exit with the number of lanes on the approach roadway being equal to the number of through lanes beyond the exit plus the lane on the exit.
3. The traveled way of the highway should be reduced by not more than one traffic lane at a time.

Lane balance is satisfied at all entrances in the project area. Lane balance is not satisfied at the exit ramp locations that are fed by a full auxiliary; to fully satisfy the criteria, escape lanes would need to be provided after the exit ramp to ensure vehicles would not become trapped in the auxiliary lane.

I-229 Exit 6 (10th Street) Interchange Project - Existing Conditions Memo
October 28, 2020
Page 22

Interchange Spacing

In urban or urbanizing areas, the minimum recommended interchange spacing is 1-mile. The three existing I-229 interchanges all currently exceed the 1-mile spacing.

Ramp Spacing

The distance between freeway ramps can be one of the most important features to impact freeway operations. SDDOT has established guidelines for desired interchange ramp spacing based on AASHTO criteria and these guidelines are documented in the SDDOT Road Design Manual, Chapter 13, and are shown in Figure 9.

Figure 9 AASHTO / SDDOT Ramp Spacing Criteria

EN-EN OR EX-EX		EX-EN		TURNING ROADWAYS		EN-EX (WEAVING)			
FULL FWY	C-D ROAD OR FWY.DIST.	FULL FWY	C-D ROAD OR FWY.DIST.	SYSTEM INTERCHANGE	SERVICE INTERCHANGE	SYSTEM TO SERVICE INTERCHANGE		SERVICE TO SERVICE INTERCHANGE	
						full	$\begin{aligned} & \text { C-D ROAD } \\ & \text { OR. } \\ & \text { FWIST. } \end{aligned}$	${ }_{\text {FWr }}^{\text {Ful }}$	$\begin{gathered} \hline \text { C-D ROAD } \\ \text { OR } \\ \text { FWY.DIST. } \end{gathered}$
$\begin{gathered} 300 \mathrm{~m} \\ {[1000 \mathrm{ft}]} \end{gathered}$	$\begin{aligned} & 240 \mathrm{~m} \\ & {[800 \mathrm{ft}]} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~m} \\ & {[500 \mathrm{ft}]} \end{aligned}$	$\begin{gathered} 120 \mathrm{~m} \\ {[400 \mathrm{ft}]} \end{gathered}$	$\begin{aligned} & 240 \mathrm{~m} \\ & {[800 \mathrm{ft}]} \end{aligned}$	$\begin{gathered} 180 \mathrm{~m} \\ {[600 \mathrm{ft}]} \end{gathered}$	$\begin{gathered} 600 \mathrm{~m} \\ {[2000 \mathrm{ft}]} \end{gathered}$	$\begin{gathered} 480 \mathrm{~m} \\ {[1600 \mathrm{ft}]} \end{gathered}$	$\begin{gathered} 480 \mathrm{~m} \\ {[1600 \mathrm{ft}]} \end{gathered}$	$\begin{gathered} 300 \mathrm{~m} \\ {[1000 \mathrm{ft}]} \end{gathered}$

The primary goal for ramp spacing is "desirable" spacing; the shortest acceptable spacing is "minimum" spacing. Table 10 summarizes the existing ramp spacing for I 229; all ramp spacing is greater than the "desirable".

Table 10 I-229 Ramp Spacing - Existing

Description			Ramp Type	Desirable Space (ft)	Minimum Space (ft)	Existing (ft)
	From	To				
$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \\ & \underset{Z}{2} \end{aligned}$	NB I-229	26th Street Exit	EN-EX	2,000	1,500	2,750
	26th Street Exit	26th Street Entrance	EX-EN	750	500	1,550
	26th Street Entrance	10th Street Exit	EN-EX	2,000	1,500	6,700
	10th Street Exit	10th Street Entrance	EX-EN	750	500	2,280
	10th Street Entrance	Rice Street Exit	EN-EX	2,000	1,500	5,110
	Rice Street Exit	Rice Street Entrance	EX-EN	750	500	1,350
	Rice Street Entrance	NB I-229	EN-EX	2,000	1,500	5,280
$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$	SB I-229	Rice Street Exit	EN-EX	2,000	1,500	5,670
	Rice Street Exit	Rice Street Entrance	EX-EN	750	500	1,340
	Rice Street Entrance	10th Street Exit	EN-EX	2,000	1,500	4,830
	10th Street Exit	10th Street Entrance	EX-EN	750	500	2,270
	10th Street Entrance	26th Street Exit	EN-EX	2,000	1,500	6,400
	26th Street Exit	26th Street Entrance	EX-EN	750	500	1,200
	26th Street Entrance	SB I-229	EN-EX	2,000	1,500	2,520

CONCLUSIONS

The existing interchange of I-229 at $10^{\text {th }}$ Street (Exit 6) currently has both safety and operational issues.

Mainline l-229

Operationally, the l-229 mainline currently performs under acceptable conditions along the study area. The 4-lane segment between Exit 5 and Exit 6 currently operate at LOS C, the southbound basic lane is currently within 10\% of the LOS D criteria during the PM peak hour.

Crashes on I-229 are concentrated mainly at entrance and exit ramp locations. Three of the four Exit 6 ramp connections are currently over the critical crash rate; only the northbound entrance ramp is not over. Both of the entrance ramps from Exit 7 are also above the critical rates. The only mainline segment over the critical rate is northbound $\mathrm{I}-229$ between Exit 5 and Exit 6; the two curves and the river bridge have had a high number of crashes with a high percentage of poor roadway conditions (rain, snow, ice, etc.).

I-229 Ramp Connections

All ramp connections are currently single lane connections to $\mathrm{I}-229$; the ramp volumes are all significantly below the capacity of each ramp and there are no capacity issues. However, three ramp connections have had a crash history that results in a crash rate above the critical rate. In the northbound direction, the Exit 5 entrance ramp and the Exit 7 off ramp have had a crash problem; poor roadway conditions on the loop ramp areas. In the southbound direction, the Exit 6 entrance has had a crash problem.

Study Intersections

The project area includes 23 study intersections that were evaluated. Operationally, many of the study intersections currently have operational issues that would require additional capacity or traffic signal upgrades to improve.

Under the existing conditions, there are fifteen intersections that currently have failing traffic operations in at least one of the peak periods; these conditions are due to volume to capacity issues, queue storage issues, or delay issues. There is an additional single intersection with an approach that is failing yet the overall intersection is acceptable. Therefore, seven intersections currently have acceptable operations in both peak periods.

The fifteen intersections with failing operations include:

- Rice Street at I-229 Southbound Ramp Terminal
- Rice Street at I-229 Northbound Ramp Terminal
- Rice Street at Bahnson Avenue
- $6^{\text {th }}$ Street at Lowell Avenue
- $10^{\text {th }}$ Street at Jessica Avenue
- $10^{\text {th }}$ Street at Lowell Avenue
- $10^{\text {th }}$ Street at I-229 SPUI
- $10^{\text {th }}$ Street at Cleveland Avenue
- $10^{\text {th }}$ Street at Hyvee Entrance
- $12^{\text {th }}$ Street at Lowell Avenue
- $18^{\text {th }}$ Street at Southeastern Avenue
- $26^{\text {th }}$ Street at Yeager/Frederick Avenue
- $26^{\text {th }}$ Street at I-229 Southbound Ramp Terminal
- $26^{\text {th }}$ Street at Southeastern Avenue
- $26^{\text {th }}$ Street at Cleveland Avenue

Of the 23 study intersection, currently 15 intersections have crash rates that exceed the critical rates; this includes at least one intersection on each corridor. There are 4 intersections that have crash rates that are more than two times the critical rate which indicates a major safety concern:

- $10^{\text {th }}$ Street at I-229 SPUI
- $10^{\text {th }}$ Street at Cleveland Avenue
- $26^{\text {th }}$ Street at I-229 Northbound
- $26^{\text {th }}$ Street at Cleveland Avenue

The $26^{\text {th }}$ Street corridor has safety issues at 5 of the 6 study intersections. The current Exit 5 construction project should improve both safety and operations at 4 of the intersections directly as they are being improved with the project. $26^{\text {th }}$ Street at Cleveland Avenue is not directly part of the current project, but improvements at the Exit 5 intersections should improve the safety and operations at this intersection as traffic will flow through the interchange area more efficiently.

Design Considerations

Based on the AASHTO design guidance, the current l-229 meets many of the basic freeway criteria including the number of basic lanes, route continuity, interchange spacing and ramp spacing. Lane balance is met at all entrance ramp locations, but is not currently met at all exit ramp locations. At an exit ramp, a full auxiliary lane typically requires an escape lane along mainline to meet the criteria for lane balance.

Recommendations

Based on the existing conditions evaluation, proposed project improvements to the corridor should address the safety and operational issues described in this memorandum.

gtj

Figures A1-A3 - Existing Traffic Volumes
HCS Analysis Summary (includes Multi-Modal)
c: Shannon Ausen, City of Sioux Falls
Heath Hoftiezer, City of Sioux Falls
Ross Harris, SEH
Ben White, HR Green
Tim Thoreen, HR Green
Rick Laughlin, HR Green
x: ffjhhhrgspl156524|8-planningl87-rpt-studlexisting conditions memoldraft exit 6 existing conditions memo 10282020.docx

HCS SUMMARY - Multi-Modal (LOS)

Intersection Location		Traffic Control	Metric	Existing Year 2021										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
	Rice Street \& Lowell Avenue		Two-way Stop Control	Delay (Sec.)	0.0	0.2	15.3	0.0	15.3	0.0	1.7	32.3	22.5	32.3
				LOS	A	A	C	A	C	A	A	D	C	D
		Ped LOS		-	-	-	-		-	-	-	-		
		Bicycle LOS		-	-	-	-		-	-	-	-		
	$\begin{gathered} \text { Rice Street \& } \\ \text { SB I-229 } \end{gathered}$	Traffic Signal	Delay (Sec.)	4.9	8.8	-	53.4	14.3	10.7	12.9	-	54.9	21.9	
			LOS	A	A	NA	D	B	B	B	NA	D	C	
			Ped LOS	A	B	B	B		A	B	B	B		
			Bicycle LOS	A	A	-	F		A	A	-	F		
	 NB I-229	Traffic Signal	Delay (Sec.)	19.9	19.4	40.3	27.4	25.1	12.1	10.6	33.9	73.5	25.5	
			LOS	B	B	D	C	C	B	B	C	E	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		B	A	A	A		
	Rice Street \& Bahnson Avenue	Two-way Stop Control	Delay (Sec.)	1.0	0.1	16.7	17.8	17.8	0.1	0.8	43.2	30.0	43.2	
			LOS	A	A	C	C	C	A	A	E	D	E	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
$\begin{aligned} & \text { ث } \\ & \text { \% } \\ & \text { फे } \\ & \stackrel{5}{6} \end{aligned}$	6th Street \& Lowell Avenue	Two-way Stop Control	Delay (Sec.)	9.0	0.4	23.1	20.5	23.1	8.3	10.4	85.0	37.0	85.0	
			LOS	A	A	C	C	C	A	B	F	E	F	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	6th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	18.3	15.2	30.5	26.9	20.0	39.6	21.0	29.7	21.6	29.8	
			LOS	B	B	C	C	B	D	C	C	C	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		A	A	A	A		
	10th Street \& Jessica Avenue	Traffic Signal	Delay (Sec.)	3.1	2.5	58.3	-	6.8	4.6	3.0	59.4	-	6.0	
			LOS	A	A	E	NA	A	A	A	E	NA	A	
			Ped LOS	B	A	B	B		B	A	B	B		
			Bicycle LOS	A	B	F	-		B	A	F	-		
	10th Street \& Lowell Avenue	Traffic Signal	Delay (Sec.)	6.0	1.5	49.9	54.5	7.0	10.9	7.2	43.5	53.5	13.3	
			LOS	A	A	D	D	A	B	A	D	D	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		
	10th Street \& Conklin Avenue	Two-way Stop Control	Delay (Sec.)	-	-	15.6	17.4	17.4	-	-	22.6	14.8	22.6	
			LOS			C	C	C			C	B	C	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& I-229 SPUI	Traffic Signal	Delay (Sec.)	39.0	34.9	48.5	41.3	37.9	440.3	85.4	31.9	45.2	248.2	
			LOS	D	C	D	D	D	F	F	C	D	F	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		A	A	A	A		
	10th Street \& Blaine Avenue	Two-way Stop Contro	Delay (Sec.)	-	-	12.4	-	12.4	-	-	19.7	-	19.7	
			LOS			B	NA	B			C	NA	C	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	13.4	27.9	38.0	69.5	31.1	11.8	23.5	40.7	61.1	27.4	
			LOS	B	C	D	E	C	B	C	D	E	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		
	 Hy-Vee Access	Traffic Signal	Delay (Sec.)	2.5	6.1	51.6	54.5	7.8	3.1	6.8	50.4	52.5	10.7	
			LOS	A	A	D	D	A	A	A	D	D	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		
	 Lowell Avenue	Two-way Stop Control	Delay (Sec.)	0.5	0.1	15.5	18.3	18.3	0.2	0.7	21.3	93.7	93.7	
			LOS	A	A	C	C	C	A	A	C	F	F	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	12th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	12.2	17.5	16.0	12.9	15.8	25.6	14.3	15.4	16.0	19.2	
			LOS	B	B	B	B	B	C	B	B	B	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		B	A	A	A		

HCS SUMMARY - Multi-Modal (LOS)

HCS SUMMARY - Intersection (LOS, QSR, V/C)

Intersection Location		Traffic Control	Metric	Existing Year 2021										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
	Rice Street \& Lowell Avenue		Two-way Stop Control	Delay (Sec.)	0.0	0.2	15.3	0.0	15.3	0.0	1.7	32.3	22.5	32.3
				LOS	A	A	C	A	C	A	A	D	C	D
		Queues (veh)		-	-	-	-		-	-	-	-		
		$v / c>1.0$		-	-	-	-		-	-	-	-		
	 SB I-229	Traffic Signal	Delay (Sec.)	4.9	8.8	-	53.4	14.3	10.7	12.9	-	54.9	21.9	
			LOS	A	A	NA	D	B	B	B	NA	D	C	
			QSR	-	-	-	0.64		-	-	-	1.34		
			$v / c>1.0$	-	-	-	0.817		-	-	-	0.96		
	 NB I-229	Traffic Signal	Delay (Sec.)	19.9	19.4	40.3	27.4	25.1	12.1	10.6	33.9	73.5	25.5	
			LOS	B	B	D	C	C	B	B	C	E	F	
			QSR	-	-	0.95	-		-	-	-	1.73		
			$v / c>1.0$	-	-	0.622	-		-	-	-	1.048		
	Rice Street \& Bahnson Avenue	Two-way Stop Control	Delay (Sec.)	1.0	0.1	16.7	17.8	17.8	0.1	0.8	43.2	30.0	43.2	
			LOS	A	A	C	C	C	A	A	E	D	E	
			Queues (veh)	-	-	-	-		-	-	1.7	2.0		
			$v / c>1.0$	-	-	-	-		-	-	-	-		
$\begin{aligned} & \text { ث } \\ & \text { \% } \\ & \text { फे } \\ & \stackrel{5}{6} \end{aligned}$	6th Street \& Lowell Avenue	Two-way Stop Control	Delay (Sec.)	9.0	0.4	23.1	20.5	23.1	8.3	10.4	85.0	37.0	85.0	
			LOS	A	A	C	C	C	A	B	F	E	F	
			Queues (veh)	-	-	-	-		-	-	4.1			
			$v / c>1.0$	-	-	-	-		-	-	0.72	-		
	6th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	18.3	15.2	30.5	26.9	20.0	39.6	21.0	29.7	21.6	29.8	
			LOS	B	B	C	C	B	D	C	C	C	C	
			QSR	-	-	-	-		-	-				
			V/c> 1.0	-	-	-	-		-	-	-	-		
	10th Street \& Jessica Avenue	Traffic Signal	Delay (Sec.)	3.1	2.5	58.3	-	6.8	4.6	3.0	59.4	-	6.0	
			LOS	A	A	E	NA	A	A	A	E	NA	A	
			QSR	-	-	1.52	-		-	-				
			v/c > 1.0	-	-	0.762	-		-	-	-	-		
	10th Street \& Lowell Avenue	Traffic Signal	Delay (Sec.)	6.0	1.5	49.9	54.5	7.0	10.9	7.2	43.5	53.5	13.3	
			LOS	A	A	D	D	A	B	A	D	D	B	
			QSR	-	-	-	-		-	1.12				
			v/c > 1.0	-	-	-	-		-	0.511	-	-		
	10th Street \& Conklin Avenue	Two-way Stop Control	Delay (Sec.)	-	-	15.6	17.4	17.4	-	-	22.6	14.8	22.6	
			LOS			C	C	C			C	B	C	
			Queues (veh)	-	-	-	-		-	-				
			v/c > 1.0	-	-	-	-		-	-	-	-		
	10th Street \& I-229 SPUI	Traffic Signal	Delay (Sec.)	39.0	34.9	48.5	41.3	37.9	440.3	85.4	31.9	45.2	248.2	
			LOS	D	C	D	D	D	F	F	C	D	F	
			QSR	-	-	-	-		-	-	-	-		
			v/c > 1.0	-	0.512	-	-		2.078	1.043	0.421	0.817		
	10th Street \& Blaine Avenue	Two-way Stop Contro	Delay (Sec.)	-	-	12.4	-	12.4	-	-	19.7	-	19.7	
			LOS			B	NA	B			C	NA	C	
			Queues (veh)	-	-	-	-		-	-				
			v/c>1.0	-	-	-	-		-	-	-	-		
	10th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	13.4	27.9	38.0	69.5	31.1	11.8	23.5	40.7	61.1	27.4	
			LOS	B	C	D	E	F	B	C	D	E	F	
			QSR	-	-	2.44	-		-	-	1.99	1.70		
			v/c >1.0	-	0.815	0.815	0.938		-	-	0.741	0.936		
	 Hy-Vee Access	Traffic Signal	Delay (Sec.)	2.5	6.1	51.6	54.5	7.8	3.1	6.8	50.4	52.5	10.7	
			LOS	A	A	D	D	A	A	A	D	D	B	
			QSR	-	-	-	-		-	-		1.74		
			$v / c>1.0$	-	-	-	-		-	-	-	0.587		
$\begin{aligned} & \stackrel{*}{0} \\ & \stackrel{y}{v} \\ & \vdots \\ & \stackrel{\rightharpoonup}{⿺} \\ & \stackrel{N}{4} \end{aligned}$	 Lowell Avenue	Two-way Stop Control	Delay (Sec.)	0.5	0.1	15.5	18.3	18.3	0.2	0.7	21.3	93.7	93.7	
			LOS	A	A	C	C	C	A	A	C	F	F	
			Queues (veh)	-	-	-	-		-	-		6.8		
			$v / c>1.0$	-	-	-	-		-	-	-	0.90		
	12th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	12.2	17.5	16.0	12.9	15.8	25.6	14.3	15.4	16.0	19.2	
			LOS	B	B	B	B	B	C	B	B	B	B	
			QSR	-	-	0.86	-		-	-				
			v/c >1.0	-	-	-	-		-	-	-	-		

		Traffic Signal	Delay (Sec.)	35.9	40.6	191.8	70.0	130.5	33.4	15.5	46.9	58.3	35.9
			LOS	D	D	F	E	F	C	B	D	E	D
			QSR	-	-	0.0	0.0		0.22	-	0.0	0.190	
			$v / c>1.0$	-	-	1.381	0.126		0.907	-	0.859	0.753	
	18th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	11.9	14.4	18.6	18.6	16.0	14.6	11.0	19.6	22.6	17.4
			LOS	B	B	B	B	B	B	B	B	C	B
			QSR	-	-	-	-		-	-		0.78	
			v/c >1.0	-	-	-	-		-	-	-	0.506	
	26th Street \& Van Eps Avenue	Traffic Signal	Delay (Sec.)	3.5	4.4	50.7	52.0	5.9	4.4	2.4	58.3	59.2	4.7
			LOS	A	A	D	D	A	A	A	E	E	A
			QSR	-	-	-	-		-	-			
			$v / c>1.0$	-	-	-	-		-	-	-	-	
	26th Street \& Frederick Drive	Two-way Stop Control	Delay (Sec.)	0.1	1.3	23.1	45.5	45.5	0.1	2.2	25.3	66.1	66.1
			LOS	A	A	C	E	E	A	A	D	F	F
			Queues (veh)	-	-	-	0.7		-	-		1.1	
			$v / c>1.0$	-	-	-	0.21		-	-	-	0.30	
	$\begin{gathered} \text { 26th Street \& } \\ \text { SB I-229 } \end{gathered}$	Traffic Signal	Delay (Sec.)	31.4	9.6	21.4	-	9.3	54.1	7.0	12.7	-	22.0
			LOS	C	A	C	NA	A	D	A	B	NA	C
			QSR	-	1.23	-	-		1.67	-	0.93		
			$v / c>1.0$	-	0.505	-	-		0.72	-	0.567	-	
	 NB I-229	Traffic Signal	Delay (Sec.)	7.8	24.9	29.8	-	22.6	25.4	9.9	32.4	-	20.4
			LOS	A	C	C	NA	C	C	A	C	NA	C
			QSR	-	-	-	-		-	-	0.0		
			$v / c>1.0$	-	0.706	0.533	-		0.739	-	0.817	-	
	 Southeastern Avenue	Traffic Signal	Delay (Sec.)	10.1	18.1	47.4	57.3	27.4	35.7	35.4	53.6	59.9	42.9
			LOS	B	B	D	E	C	D	D	D	E	D
			QSR	-	-	1.31	-		-	-			
			$v / c>1.0$	-	0.842	0.743	-		-	-	-	-	
	26th Street \& Cleveland Avenue	Traffic Signal	Delay (Sec.)	8.0	21.3	53.6	45.5	20.4	8.0	26.6	59.2	47.5	21.0
			LOS	A	C	D	D	C	A	C	E	D	C
			QSR	-	-	-	-		-	-		1.69	
			$v / c>1.0$	-	-	-	-		-	-	-	0.543	

Appendix D - Future Conditions Memo

Page 1

DRAFT MEMORANDUM

TO:	Steve Gramm South Dakota Department of Transportation
FROM:	Chase Cutler, HR Green, PE, PTOE
DATE:	February 2, 2021
RE:	I-229 Exit 6 (10th Street) Interchange Study - Future No Build Traffic Operations Memo SD DOT Project Number: PL0194(98) P, PCN 07P7

This technical memorandum provides the future year traffic operations results for the I-229 Exit 6 Interchange Study. The project area includes mainline I-229 between Exit 5 and Exit 7, as well as adjacent intersections along the corridors of Rice Street, $6^{\text {th }}$ Street, $10^{\text {th }}$ Street, $12^{\text {th }}$ Street, $18^{\text {th }}$ Street, Southeastern Avenue, and $26^{\text {th }}$ Street in Sioux Falls, South Dakota.

TABLE OF CONTENTS

Introduction... 2
Traffic Operations Analysis Methodology ... 3
Future Year 2027 and 2050 Peak Hour Volumes .. 4
2027 No Build Traffic Operations ... 5
2050 No Build Traffic Operations .. 10
Summary.. 15
Appendix A - HCS Summary ...A

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 2

INTRODUCTION

As part of the I-229 Exit 6 (10 th Street) Interchange Modification Study in the City of Sioux Falls, South Dakota, an operational analysis of the system was conducted.

The study area limits extend north/south along l-229 from Exit 5 ($26^{\text {th }}$ Street) to Exit 7 (Rice Street), and east/west along $10^{\text {th }}$ Street from Jessica Avenue to the signalized Hy-Vee/Campbells entrance. Additional corridors within the study limits include:

- $26^{\text {th }}$ Street from Van Eps Avenue to Southeastern Avenue,
- $18^{\text {th }}$ Street from Southeastern Avenue to Cleveland Avenue,
- $12^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue,
- $6^{\text {th }}$ Street from Lowell Avenue to Cleveland Avenue, and
- Rice Street from Lowell Avenue to Bahnson Avenue.

The purpose of this memorandum is to present the resulting values for the future No Build traffic operation analysis and assessment of traffic conditions. This information will serve as the baseline analysis for the evaluation and refinement of Build concepts at the I-229 Exit 6 interchange.

Figure 1: Study Area

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 3

TRAFFIC OPERATIONS ANALYSIS METHODOLOGY

System traffic operations for the 2027 Year of Project Completion and 2050 Planning Horizon Year forecasted traffic were evaluated by conducting a capacity analysis of freeway segments and arterial intersections to assess the quality of service within the study area. The capacity analysis methodology considers traffic volumes, geometry, signal control type, and other characteristics to determine how the system is operating.

Analysis measures and methodologies are based on those outlined in the $6^{\text {th }}$ edition of the Highway Capacity Manual (HCM 6). This provides a systematic, and widely understood, method to compare operations of similar roadway segment type or intersection across various alternatives in terms of Level of Service (LOS). Along freeway segments, the primary Measure of Effectiveness (MOE) is vehicle density measured in terms of passenger cars per mile ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$), shown in Table 1. This applies to basic freeway (mainline), segments, merge/diverge segments, and weave segments. At unsignalized and signalized intersections, the primary MOE is average control delay, measured in seconds per vehicle (sec/veh), shown in Table 2. A weighted average approach was also used to present an alternative average delay measure at minor cross-street two-way stop-controlled intersections.

Table 1: Freeway Level of Service Thresholds

Level of Service (LOS)	Merging and Diverging Segment	Freeway Weaving Segment	Basic Freeway Segment
	$0-10$	$0-10$	$0-11$
A	$>10-20$	$>10-20$	$>11-18$
B	$>20-28$	$>20-28$	$>18-26$
C	$>28-35$	$>28-35$	$>26-35$
D	>35	>35	$>35-45$
E	Demand exceeds capacity	Demand exceeds capacity	Demand exceeds capacity; >45
F			

Source: Transportation Research Board, Highway Capacity Manual, $6^{\text {th }}$ edition.

Table 2: Intersection Level of Service Thresholds

Level of Service (LOS)	Signalized Intersections	Two-Way Stop-Control*, All-Way Stop-Control, and Roundabouts
	$0-10$	$0-10$
A	$>10-20$	$>10-15$
B	$>20-35$	$>15-25$
C	$>35-55$	$>25-35$
D	$>55-80$	$>35-50$
E	>80	Demand exceeds capacity; >50
F	Demand exceeds capacity;	Den

Source: Transportation Research Board, Highway Capacity Manual, $6^{\text {th }}$ edition

* Two-way stop-control LOS reflects worst-case stop-controlled approach.

Level of Service measures are graded in accordance with six levels of traffic service, between A and F, established by the HCM 6. Levels of service (LOS) are measures of traffic operations which consider speed, delay, traffic interruptions, safety, driver comfort, and convenience ranging from Level A "Free Flow" to Level F "Fully Saturated". LOS C, which is normally used for design, represents a roadway with volumes ranging from 70% to 80% of its capacity. LOS D is generally considered acceptable for peak periods in urban and suburban areas. LOS C is typically acceptable for newly constructed roadways in urban areas and LOS E represents full capacity. Other MOEs not directly translated to LOS thresholds, but still an important part in the assessment of quality of service and often related to LOS threshold measures include queue length and average vehicle travel speed. In addition, volume to capacity (V/C), often expressed as a ratio, is used to quantify available capacity of a roadway segment based on a given demand.

The SDDOT has established a minimum LOS C on urban interstate highway corridors. At ramp terminal intersections, the overall intersection must be at a LOS C or better; however, individual movements may operate at a LOS D. At other arterial intersections, the overall intersection must be a LOS D or better; however, individual movements may operate at a LOS E if signalized or LOS F if unsignalized. Signalized intersections that are modified by the project cannot operate with a volume to capacity ratio greater than 1 for any movement. If arterial intersections are shown to have any movements with a queue storage ratio greater than 1 than that intersection will be reported as LOS F.

The traffic operations analysis utilized Highway Capacity Software 7 (HCS 7), Version 7.9. I-229 freeway operations on basic freeway, merge/diverge, and weaving segments were analyzed using the Freeways Facility module. The crossroad corridor intersections were analyzed using the Streets module for signalized intersections and the Stop Control module for any unsignalized intersections. Synchro/SimTraffic, Version 10 was used to develop signal timings at local arterial intersections.

FUTURE YEAR 2027 AND 2050 PEAK HOUR VOLUMES

Future year AM and PM peak hour traffic volumes were developed for 2027 and 2050 No-Build Conditions using the Existing Conditions peak hour traffic volumes and the Sioux Falls Metropolitan Planning Organization 2045 travel demand model. Future year 2027 represents the Year of Project Completion and 2050 represents the Planning Year horizon for the interchange and corridor improvements. The Traffic Forecast memorandum presents more details regarding the future-year peak hour traffic model development.

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 5

2027 NO BUILD TRAFFIC OPERATIONS

The traffic operations representing the 2027 Year of Project Completion No Build condition are provided in the following section. The project area includes 3 service interchanges with 12 ramp junctions. Results for the individual segments and ramp junctions of l-229 within the study area are shown in Table 3 as well as Figure 2.

Table 3: 2027 No Build Freeway Operations Summary

Road	Description	Analysis Type	AM Peak LOS	$\begin{gathered} \text { PM Peak } \\ \text { LOS } \end{gathered}$
$\frac{\underset{\sim}{N}}{\frac{1}{\mathbf{n}}}$	NB I-229: southwest of Exit 5	Basic	B	B
	NB 1-229: between Exit 5 Exit and Entrance Ramps	Basic	B	B
	NB I-229: Exit 5 Entrance Ramp	Merge	C	B
	NB 1-229: between Exit 5 and Exit 6	Basic	C	B
	NB 1-229: Exit 6 Exit Ramp	Diverge	B	B
	NB I-229: between Exit 6 Exit and Entrance Ramps	Basic	B	A
	NB I-229: between Exit 6 and Exit 7	Basic	B	A
		Weave	B	B
	NB I-229: between Exit 7 Exit and Entrance Ramps	Basic	C	A
	NB I-229: north of Exit 7	Basic	B	A
$\begin{aligned} & \stackrel{\sim}{N} \\ & \frac{1}{\infty} \end{aligned}$	SB 1-229: north of Exit 7	Basic	A	B
	SB I-229: between Exit 7 Exit and Entrance Ramps	Basic	A	C
	SB I-229: between Exit 7 and Exit 6	Basic	A	B
		Weave	B	B
	SB I-229: between Exit 6 Exit and Entrance Ramps	Basic	B	C
	SB I-229: Exit 6 Entrance Ramp	Merge	B	C
	SB I-229: between Exit 6 and Exit 5	Basic	B	D
	SB I-229: Exit 5 Exit Ramp	Diverge	B	D
	SB I-229: between Exit 5 Exit and Entrance Ramps	Basic	B	C
	SB I-229: southwest of Exit 5	Basic	B	B

The analysis of the 2027 No Build condition demonstrated that the majority of mainline I-229 operated acceptably. However, the mainline segment of southbound I-229 between Exit 6 and Exit 5 and the ramp diverge to Exit 5 were shown to operate at LOS D during the PM peak hour. All other mainline segments operated at a LOS C or better during the $A M$ and $P M$ peak hours.

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 6
Figure 2: 2027 No Build Freeway Summary

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 7
A total of 23 study intersections were included in the analysis, including 16 traffic signals, 5 minor stop control intersections, and 2 right-in/right-out ($\mathrm{RI} / \mathrm{RO}$) intersections. Results for the intersection analysis in the project area are shown in Table 4 as well as Figure 3.

Table 4: 2027 No Build Arterial Intersection Operations Summary

Major Roadway	Intersecting Roadway	Control Type	AM Peak Hour					PM Peak Hour				
			Approach				INT.	Approach				INT.
			EB	WB	NB	SB		EB	WB	NB	SB	
Rice Street	Lowell Avenue	Minor Stop	A	A	C	A	C	A	A	E	A	E
Rice Street	I-229 SB Ramp Terminal	Signal	A	A	NA	C	B	B	C	NA	D*	C*
Rice Street	I-229 NB Ramp Terminal	Signal	A	C	C	B	B	C	B	D	E-*	C-*
Rice Street	Bahnson Avenue	Minor Stop	A	A	C	C	C	A	A	E	D	E
$6^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	D	C	D	A	A	F	E	F
$6{ }^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	C	C	B	D	B	F	C*	D-*
$10^{\text {TH }}$ Street	Jessica Avenue	Signal	A	A	D*	NA	A*	A	A	D	NA	A
$10^{\text {TH }}$ Street	Lowell Avenue	Signal	A	A	C	D	A	B	A^{*}	D	D	B*
$10^{\text {TH }}$ Street	Conklin Avenue	RI/RO			C	C	C			C	C	C
$10^{\text {TH }}$ Street	I-229 SPUI	Signal	B	B	B	B	B	D	C	B	D	D
$10^{\text {TH }}$ Street	Blaine Avenue	RI/RO			B	NA	B			C	NA	C
$10^{\text {TH }}$ Street	Cleveland Avenue	Signal	A	B	D*	F	C-*	B*	C	D*	E	C*
$10^{\text {TH }}$ Street	Hy-Vee Entrance	Signal	A	A	C	C	A	A	A	D	D*	A^{*}
$12^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	B	C	C	A	A	C	E	E
$12^{\text {TH }}$ Street	Cleveland Avenue	Signal	A	B	B	B	B	B	B	B	C	B
$18^{\text {TH }}$ Street	Southeastern Avenue	Signal	C	C	F	D	F	E	B	D	F	E-
$18^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	A	A	B	B	B	B	B	B
26 ${ }^{\text {TH }}$ Street	Van Eps Avenue	Signal	A	A	D	D	A	A	A	B	B	A
$26^{\text {TH }}$ Street	Yeager/Frederick Avenue	Minor Stop	A	A	D	E	E	A	A	C	F	F
$26^{\text {TH }}$ Street	I-229 SB Ramp Terminal	Signal	B	A	A	NA	A	C	A	A	NA	B
$26^{\text {TH }}$ Street	I-229 NB Ramp Terminal	Signal	B	B	B	NA	B	B	A	F	NA	D-
$26^{\text {TH }}$ Street	Southeastern Avenue	Signal	B	C	D*	D	C*	C	C	D	E	C
$26^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	D	C	B	B	C	D	C*	C*

Notes:

- "n/a" denotes an approach that does not exist at the intersection. "-" denotes an approach with no delay due to control type.
- Bold/Highlighted indicates a poor LOS due to LOS E/F, volume to capacity (v/c) ration > 1.0 , or queue storage issue.
- " * " Queue storage ratio (QSR) greater than 1.0 for at least one movement resulting in entire intersection considered failing.
- " - " At least one movement is deemed failing resulting in entire intersection considered failing (not noted if intersection is LOS F).

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 8
The analysis of the 2027 No Build condition determined that there were sixteen intersections that demonstrated inadequate traffic operations in at least one of the peak periods. The intersections exhibited issues with high delays, inadequate queue storage, or capacity constraints.

Along Rice Street, both ramp terminal intersections operated at a LOS C or better; however, both intersections had at least one movement that failed. The southbound ramp had a southbound left turn that operated at a LOS D with a QSR greater than 1, the northbound ramp had a southbound left turn that operated at a LOS F with both QSR and V/C issues. The other two arterial intersections along Rice Street also demonstrated poor operations with a LOS E during the PM peak hour.

Along $6^{\text {th }}$ Street, the Lowell Avenue intersection operated at a LOS F with high delays on the northbound and southbound approaches. The intersection with Cleveland Avenue operated at LOS D but had a failing northbound right turn movement and a southbound left turn that demonstrated QSR issues.

Along $10^{\text {th }}$ Street, the ramp terminal intersection operated at a LOS B and LOS D during the AM and PM peak hours, respectively. This intersection demonstrated V/C issues on both the eastbound and westbound approaches with significant delays attributed to the left turn movements. The other arterial intersections along $10^{\text {th }}$ Street all demonstrated poor operations with the exception of the two right-in, right-out intersections with Conklin Avenue and Blaine Avenue. At Jessica Avenue, the northbound approach demonstrated QSR issues. At Lowell Avenue, the westbound approach demonstrated QSR issues. At Cleveland Avenue, the northbound and eastbound approaches demonstrated QSR issues and the southbound approach demonstrated V/C issues. At the Hy-Vee access, the southbound approach demonstrated QSR issues.

Along $12^{\text {th }}$ Street, the intersection with Lowell Avenue was shown to operate at a LOS E with high delays on the southbound approach. The intersection with Cleveland was shown to operate with a LOS B.

Along $18^{\text {th }}$ Street, the intersection with Southeastern Avenue was shown to operate at a LOS F and E during the AM and PM peak hour, respectively. The heavy northbound left turn volume contributed to a high delay and significant V/C issue during the AM peak hour. Similarly, the PM peak hour eastbound approach carries a high rightturning volume that contributes to V/C issues along with high delays on the southbound approach.

Along $26^{\text {th }}$ Street, the southbound ramp terminal intersection operated at LOS B or better, but the northbound ramp terminal intersection was shown to operate at LOS D with the heavy northbound right turn volume contributing to high delays and V/C issues. The other arterial intersections along $26^{\text {th }}$ Street demonstrated poor operations with the exception of the intersection with Van Eps Avenue. At Fredrick Avenue, the southbound approach demonstrated high delays and LOS F. At Southeastern Avenue, the overall intersection operated at a LOS C, but the northbound left turn had a QSR greater than 1. At Cleveland Avenue, the overall intersection operated at a LOS C or better, but the southbound left turn had a QSR greater than 1.

The Streets module within HCS analysis was used to analyze pedestrian and bicycle facilities using the HCM multimodal methodology. Multi-modal methodology limitations only allow for the analysis of signalized intersections. Most of the intersections have a LOS of C or better for both the pedestrian and bicycle operations. There were 3 locations that demonstrated a poor LOS, including Rice Street \& SB I-229, 10 ${ }^{\text {th }}$ Street 7 Jessica Avenue, and $26{ }^{\text {th }}$ Street \& SB I-229. The multi-modal scores can be seen in Appendix A.

Page 9
Figure 3: 2027 No Build Arterial Summary

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 10

2050 NO BUILD TRAFFIC OPERATIONS

The traffic operations representing the 2050 Year of Planning No Build condition are provided in the following section. The project area includes 3 service interchanges with 12 ramp junctions. Results for the individual segments and ramp junctions of l-229 within the study area are shown in Table 5 as well as Figure 4.

Table 5: 2050 No Build Freeway Operations Summary

Road	Description	Analysis Type	AM Peak LOS	\| PM Peak LOS
$\frac{\underset{\sim}{N}}{\underset{\sim}{\sim}}$	NB I-229: southwest of Exit 5	Basic	D	D
	NB 1-229: between Exit 5 Exit and Entrance Ramps	Basic	E	D
	NB I-229: Exit 5 Entrance Ramp	Merge	F	D
	NB 1-229: between Exit 5 and Exit 6	Basic	F	D
	NB 1-229: Exit 6 Exit Ramp	Diverge	F	C
	NB 1-229: between Exit 6 Exit and Entrance Ramps	Basic	C	B
	NB I-229: between Exit 6 and Exit 7	Basic	C	B
		Weave	D	B
	NB 1-229: between Exit 7 Exit and Entrance Ramps	Basic	D	B
	NB 1-229: north of Exit 7	Basic	C	B
$\begin{gathered} \stackrel{\sim}{N} \\ \frac{\underset{\sim}{\infty}}{} \end{gathered}$	SB I-229: north of Exit 7	Basic	B	C
	SB I-229: between Exit 7 Exit and Entrance Ramps	Basic	B	D
	SB I-229: between Exit 7 and Exit 6	Basic	B	C
		Weave	B	D
	SB I-229: between Exit 6 Exit and Entrance Ramps	Basic	B	D
	SB I-229: Exit 6 Entrance Ramp	Merge	C	F
	SB I-229: between Exit 6 and Exit 5	Basic	D	F
	SB I-229: Exit 5 Exit Ramp	Diverge	D	F
	SB I-229: between Exit 5 Exit and Entrance Ramps	Basic	C	E
	SB I-229: southwest of Exit 5	Basic	C	D

The analysis of the 2050 No Build condition revealed capacity constraints leading to poor operating LOS throughout mainline l-229. Out of the 18 total mainline segments, 15 were shown to operate at a LOS D or worse during either the AM or PM peak hour. There were three mainline segments that operated at a LOS C or better during the AM and $P M$ peak hours.

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 11
Figure 4: 2050 No Build Freeway Summary

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 12
A total of 23 study intersections were included in the analysis, including 16 traffic signals, 5 minor stop control intersections, and 2 right-in/right-out ($\mathrm{RI} / \mathrm{RO}$) intersections. Results for the intersection analysis in the project area are shown in Table 6 as well as Figure 5.

Table 6: 2050 No Build Arterial Intersection Operations Summary

Major Roadway	Intersecting Roadway	Control Type	AM Peak Hour					PM Peak Hour				
			Approach				INT.	Approach				INT.
			EB	WB	NB	SB		EB	WB	NB	SB	
Rice Street	Lowell Avenue	Minor Stop	A	A	D	A	D	A	C	F	F	F
Rice Street	I-229 SB Ramp Terminal	Signal	B*	B	NA	E	C-*	C*	C	NA	D*	C*
Rice Street	I-229 NB Ramp Terminal	Signal	F	F	F^{*}	E*	F	F	D	F*	F*	F
Rice Street	Bahnson Avenue	Minor Stop	A	A	F	E	F	A	A	F	F	F
$6^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	F	F	F	A	A	F	E	F
$6{ }^{\text {TH }}$ Street	Cleveland Avenue	Signal	C	C	E	C	D	E	E*	F*	F*	F
$10^{\text {TH }}$ Street	Jessica Avenue	Signal	A	A	C	NA	A	B	A	D	NA	B
$10^{\text {TH }}$ Street	Lowell Avenue	Signal	A	B	E	E	B	D	C*	D	F	D-*
$10^{\text {TH }}$ Street	Conklin Avenue	RI/RO			D	D	D			F	C	F
$10^{\text {TH }}$ Street	I-229 SPUI	Signal	F	D	F	D	F	E	D	D	F	E-
$10^{\text {TH }}$ Street	Blaine Avenue	RI/RO			C	NA	C			E	NA	E
$10^{\text {TH }}$ Street	Cleveland Avenue	Signal	D*	F	F*	F	F	B*	F	F*	F*	F
$10^{\text {TH }}$ Street	Hy-Vee Entrance	Signal	A*	B	E	F	B-*	A*	B	E*	E*	B*
$12^{\text {TH }}$ Street	Lowell Avenue	Minor Stop	A	A	C	C	C	A	A	D	F	F
$12^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	B	B	B	B	D	B	C	C	C
$18^{\text {TH }}$ Street	Southeastern Avenue	Signal	E	E	F	F	F	F	C*	E	F	F
$18^{\text {th }}$ Street	Cleveland Avenue	Signal	B	C	A	A	B	B	B	B	C	B
26 ${ }^{\text {TH }}$ Street	Van Eps Avenue	Signal	A	A	C	C	A	A	A	C	C	A
26 ${ }^{\text {TH }}$ Street	Yeager/Frederick Avenue	Minor Stop	A	A	D	F	F	A	A	D	F	F
$26^{\text {TH }}$ Street	I-229 SB Ramp Terminal	Signal	B	A	B	NA	B	C	A	B	NA	B
$26^{\text {TH }}$ Street	I-229 NB Ramp Terminal	Signal	C	B	B	NA	B	B	A	F	NA	E-
$26^{\text {TH }}$ Street	Southeastern Avenue	Signal	C	D*	F*	E	E-*	C	D	E	F*	E-*
$26^{\text {TH }}$ Street	Cleveland Avenue	Signal	B	C	E	D	C	B	C	D	D*	C*

Notes:

- "n/a" denotes an approach that does not exist at the intersection. "-" denotes an approach with no delay due to control type.
- Bold/Highlighted indicates a poor LOS due to LOS E/F, volume to capacity (v/c) ration > 1.0 , or queue storage issue.
- " * " Queue storage ratio (QSR) greater than 1.0 for at least one movement resulting in entire intersection considered failing.
- " - " At least one movement is deemed failing resulting in entire intersection considered failing (not noted if intersection is LOS F).

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 13
The analysis of the 2050 No Build condition determined that there were eighteen intersections that demonstrated inadequate traffic operations in at least one of the peak periods. The intersections exhibited issues with high delays, inadequate queue storage, or capacity constraints.

Along Rice Street, all intersections operated with LOS F or QSR and V/C issues that designate them failing. The southbound ramp terminal intersection operated at a LOS C with a QSR greater than 1, the northbound ramp terminal intersection operated at a LOS F with a QSR greater than 1 and V/C issues. The other two arterial intersections along Rice Street also demonstrated poor operations with a LOS F and V/C issues.

Along 6 ${ }^{\text {th }}$ Street, all intersections operated with LOS F or QSR and V/C issues that designate them failing.
Along $10^{\text {th }}$ Street, the ramp terminal intersection operated at a LOS F and LOS E during the AM and PM peak hours, respectively with V/C issues. The other arterial intersections along $10^{\text {th }}$ Street all demonstrated poor operations with the exception of Jessica Avenue. At Lowell Avenue, the westbound approach demonstrated QSR issues. The right-in, right-out intersections with Conklin Avenue and Blaine Avenue, were shown to operate at LOS F and LOS E, respectively. At Cleveland Avenue, the intersection experienced high delays, QSR and V/C issues. At the HyVee access, the northbound and southbound approaches demonstrated QSR issues.

Along $12^{\text {th }}$ Street, the intersection with Lowell Avenue was shown to operate at a LOS F with high delays and V/C issues on the southbound approach. The intersection with Cleveland was shown to operate with a LOS B and LOS C during the AM and PM peak hours, respectively.

Along $18^{\text {th }}$ Street, the intersection with Southeastern Avenue was shown to operate at a LOS F. The heavy northbound left turn volume contributed to a high delay and significant V / C issue during the AM peak hour. Similarly, the PM peak hour carries a high eastbound right-turning volume that contributes to V/C issues along with high delays on the southbound approach and QSR issues on the westbound approach.

Along $26^{\text {th }}$ Street, the southbound ramp terminal intersection operated at LOS B or better, but the northbound ramp terminal intersection was shown to operate at LOS E with the heavy northbound right turn volume contributing to high delays and V/C issues. The other arterial intersections along $26^{\text {th }}$ Street demonstrated poor operations with the exception of the intersection with Van Eps Avenue. At Fredrick Avenue, the southbound approach demonstrated high delays and LOS F. At Southeastern Avenue, the intersection operated at a LOS E, with QSR and V/C issues. At Cleveland Avenue, the overall intersection operated at a LOS C or better, but the southbound left turn had a QSR greater than 1.

The Streets module within HCS analysis was used to analyze pedestrian and bicycle facilities using the HCM multimodal methodology. Multi-modal methodology limitations only allow for the analysis of signalized intersections. Most of the intersections have a LOS of C or better for both the pedestrian and bicycle operations. There were 4 locations that demonstrated a poor LOS, including Rice Street \& SB I-229, 10 th Street \& Jessica Avenue, $18^{\text {th }}$ Street \& Southeastern Avenue, and $26^{\text {th }}$ Street \& SB I-229. The multi-modal scores can be seen in Appendix A.

Figure 5: 2050 No Build Arterial Summary

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page 15

SUMMARY

The No Build traffic operations analysis of the 2027 Year of Project Construction and the 2050 Planning Horizon Year provide documentation of the operational deficiencies that manifest within the study area due to traffic demand increases across this time period and capacity constraints imposed by the existing roadway infrastructure.

The 2027 No Build operations analysis demonstrated that the majority of mainline I-229 operated acceptably. However, southbound I-229 between Exit 6 and Exit 5 and the ramp diverge to Exit 5 were shown to operate at LOS D during the PM peak hour. All other mainline segments operated at a LOS C or better during the AM and PM peak hours. Under the 2027 No Build traffic volumes, there were few capacity constraints present along mainline I-229 or at the ramp junctions.

The 2027 No Build operations analysis of arterial intersections demonstrated that 16 out of the 23 intersections resulted in operations that were considered failing. The I-229 Exit 6 interchange ramp terminal intersection was determined to operate with a LOS B and LOS D during the AM and PM peak hours, respectively. The other ramp terminal intersections also demonstrated failing operations in at least one peak hour, with the exception of the southbound Exit 5 ramp terminal intersection. The arterial intersections were determined to operate poorly due to either high delays or QSR greater than 1, but there were also capacity issues documented with V/C greater than 1 at approach movements.

Along $10^{\text {th }}$ Street, the arterial intersections demonstrated poor operations with the exception of the two right-in, right-out intersections with Conklin Avenue and Blaine Avenue. At Jessica Avenue, the northbound approach demonstrated QSR issues. At Lowell Avenue, the westbound approach demonstrated QSR issues. At Cleveland Avenue, the northbound and eastbound approaches demonstrated QSR issues and the southbound approach demonstrated V/C issues. At the Hy-Vee access, the southbound approach demonstrated QSR issues.

The 2050 No Build operations analysis revealed capacity constraints leading to poor operating LOS throughout mainline I-229. The majority of mainline segments were determined to have failing operations. Out of the 18 total mainline segments, 15 were shown to operate at a LOS D or worse during either the AM or PM peak hour. Under the 2050 No Build traffic volumes, the existing road network demonstrated the capacity limitations present along mainline I-229 and at the ramp junctions that should be addressed.

The 2050 No Build operations analysis of arterial intersections demonstrated that 18 out of the 23 intersections resulted in operations that were considered failing. The l-229 Exit 6 interchange ramp terminal intersection was determined to operate with a LOS F and LOS E during the AM and PM peak hours, respectively. The other ramp terminal intersections also demonstrated failing operations in at least one peak hour, with the exception of the southbound Exit 5 ramp terminal intersection. The arterial intersections were determined to operate poorly due to either high delays or QSR greater than 1, but there were also capacity issues documented with V/C greater than 1 at approach movements.

Along $10^{\text {th }}$ Street, the arterial intersections demonstrated poor operations with the exception of Jessica Avenue. At Lowell Avenue, the westbound approach demonstrated QSR issues. The right-in, right-out intersections with Conklin Avenue and Blaine Avenue, were shown to operate at LOS F and LOS E, respectively. At Cleveland Avenue, the intersection experienced high delays, QSR and V/C issues. At the Hy-Vee access, the northbound and southbound approaches demonstrated QSR issues.

Throughout the I-229 corridor, the operations of the mainline segments are shown to degrade as traffic volumes increase with the majority experiencing failing operations by year 2050. Similarly, the arterial intersections showed degrading traffic operations with high delays, queue storage issues and capacity constraints at intersections increasing over time with many intersections failing by year 2050.

I-229 Exit 6 (10th Street) Interchange Study - Future Traffic Operations Memo
February 2, 2021
Page A
APPENDIX A - HCS SUMMARY

Intersection Location		Traffic Control	Metric	Interim Year 2027										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
	Rice Street \& Lowell Avenue		Two-way Stop Control	Volume	295	775	110	0	1180	1015	500	65	0	1580
				Delay (Sec.)	0.0	0.2	15.1	0.0	15.1	0.0	1.6	40.7	0	40.7
		LOS		A	A	C	A	C	A	A	E	A	E	
		Weighted Intersection Delay (Sec.)		-	-	-	-	1.54	-	-	-	-	2.18	
		Ped LOS		-	-	-	-		-	-	-	-		
		Bicycle LOS		-	-	-	-		-	-	-	-		
	Rice Street \&SB I-229	Traffic Signal	Volume	345	1055	0	215	1615	980	610	0	475	2065	
			Delay (Sec.)	5.4	10	-	32.7	12.1	13.1	20.1	-	35.9	20.3	
			LOS	A	A	NA	C	B	B	C	NA	D	C	
			Ped LOS	A	B	B	B		A	B	B	B		
			Bicycle LOS	A	A	-	F		A	A	-	F		
	Rice Street \&NB I-229	Traffic Signal	Volume	370	905	445	310	2030	1175	520	300	475	2470	
			Delay (Sec.)	8.5	21	29.3	17.4	20.0	22.6	13.6	40.4	60.4	30.1	
			LOS	A	C	C	B	B	C	B	D	E	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		C	A	A	A		
	Rice Street \& Bahnson Avenue	Two-way Stop Control	Volume	285	865	40	20	1210	860	435	45	95	1435	
			Delay (Sec.)	0.9	0.1	17.3	16.8	17.3	0.0	0.8	41.2	28.6	41.2	
			LOS	A	A	C	C	C	A	A	E	D	E	
			Weighted Intersection Delay (Sec.)	-	-	-	-	1.13	-	-	-	-	3.43	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	6th Street \& Lowell Avenue	Two-way Stop Control	Volume	400	715	25	40	1180	950	465	85	45	1545	
			Delay (Sec.)	0.2	0.3	26.4	21.3	26.4	0.4	0.9	99.0	40.9	99.0	
			LOS	A	A	D	C	D	A	A	F	E	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	1.53	-	-	-	-	7.15	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	6th Street \& Cleveland Avenue	Traffic Signal	Volume	425	1065	440	265	2195	900	580	615	535	2630	
			Delay (Sec.)	17.5	15.4	30.4	21.9	19.6	36.0	17.8	89.1	26.9	42.5	
			LOS	B	B	C	C	B	D	B	F	C	D	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		A	A	A	A		
	10th Street \& Jessica Avenue	Traffic Signal	Volume	665	1435	155	0	2255	1700	920	90	0	2710	
			Delay (Sec.)	3.4	1.6	41.5	-	5.1	5.6	3.0	49.8	-	6.1	
			LOS	A	A	D		A	A	A	D		A	
			Ped LOS	B	A	B	B		B	A	B	B		
			Bicycle LOS	A	B	F	-		B	A	F	-		
	10th Street \& Lowell Avenue	Traffic Signal	Volume	715	1350	60	105	2230	1435	1155	80	190	2860	
			Delay (Sec.)	6.0	2.7	34.5	37.2	6.3	15.7	8.7	37.3	46.1	15.5	
			LOS	A	A	C	D	A	B	A	D	D	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	B	A	A		
	10th Street \& Conklin Avenue	Two-way Stop Control	Volume	800	1345	125	10	2280	1585	1150	65	20	2820	
			Delay (Sec.)	-	-	15.2	16.9	16.9	-	-	24.3	15.4	24.3	
			LOS			C	C	C			C	C	C	
			Weighted Intersection Delay (Sec.)	-	-	-	-	0.91	-	-	-	-	0.67	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& I-229 SPUI	Traffic Signal	Volume	605	1105	320	180	2210	1145	1020	275	465	2905	
			Delay (Sec.)	18.5	14.4	15.6	10.1	15.0	47.3	32.2	11.1	38.4	35.4	
			LOS	B	B	B	B	B	D	C	B	D	D	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		B	A	A	A		
	 Blaine Avenue	Two-way Stop Control	Volume	975	1600	5	0	2580	1905	1290	10	0	3205	
			Delay (Sec.)	-	-	12.4	-	12.4	-	-	21.5	-	21.5	
						B		B			C		C	
			Weighted Intersection Delay (Sec.)	-	-	-	-	0.02	-	-	-	-	0.07	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& Cleveland Avenue	Traffic Signal	Volume	945	1265	445	375	3030	1860	1065	435	515	3875	
			Delay (Sec.)	7.3	19.4	49.3	136.1	34.9	14.9	25.7	49.1	77.8	30.3	
			LOS	A	B	D	F	C	B	C	D	E	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		

Intersection Location		Traffic Control	Metric	Interim Year 2027										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
	10th Street \& Hy-Vee Access		Traffic Signal	Volume	765	1290	20	100	2175	1540	1030	60	195	2825
				Delay (Sec.)	5.2	9.2	33.2	34.0	9.3	4.2	7.6	43.0	45.2	9.2
		LOS		A	A	C	C	A	A	A	D	D	A	
		Ped LOS		B	B	B	B		B	B	B	B		
		Bicycle LOS		A	B	A	A		B	A	A	A		
	12th Street \& Lowell Avenue	Two-way Stop Control	Volume	150	430	55	50	685	615	260	45	135	1055	
			Delay (Sec.)	0.6	0.1	14.2	15.9	15.9	0.1	0.7	17.6	46.3	46.3	
			LOS	A	A	B	C	C	A	A	C	E	E	
			Weighted Intersection Delay (Sec.)	-	-	-	-	2.49	-	-	-	-	6.91	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	12th Street \& Cleveland Avenue	Traffic Signal	Volume	95	405	485	185	1170	635	245	370	455	1705	
			Delay (Sec.)	9.5	15.1	13.2	10.2	13.1	18.4	10.3	18.1	20.6	17.7	
			LOS	A	B	B	B	B	B	B	B	C	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		B	A	A	A		
	 Southeastern Avenue	Traffic Signal	Volume	230	430	1070	50	1780	1400	220	450	105	2175	
			Delay (Sec.)	30.1	33.6	208.6	48.0	139.2	65.3	15.6	44.7	102.6	57.7	
			LOS	C	C	F	D	F	E	B	D	F	E	
			Ped LOS	B	B	B	B		B	B	B	C		
			Bicycle LOS	A	A	B	A		C	A	A	A		
	18th Street \& Cleveland Avenue	Traffic Signal	Volume	120	390	215	200	925	550	160	270	430	1410	
			Delay (Sec.)	13.4	19.7	8.7	8.8	14.0	18.0	11.6	12.4	14.2	15.2	
			LOS	B	B	A	A	B	B	B	B	B	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		A	A	A	A		
	26th Street \& Van Eps Avenue	Traffic Signal	Volume	380	830	10	45	1265	690	510	5	25	1230	
			Delay (Sec.)	2.7	4.9	40.0	41.1	5.8	4.5	4.0	19.5	19.8	4.6	
			LOS	A	A	D	D	A	A	A	B	B	A	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		
	 Frederick Drive	Two-way Stop Control	Volume	415	860	85	25	1385	545	630	170	25	1370	
			Delay (Sec.)	0.1	1.2	25.5	48.7	48.7	0.2	2.1	23.9	59.2	59.2	
			LOS	A	A	D	E	E	A	A	C	F	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	3.22	-	-	-	-	5.09	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	26th Street \&SB I-229	Traffic Signal	Volume	470	1605	365	0	2440	685	1120	730	0	2535	
			Delay (Sec.)	16.5	4.4	9.3	-	7.2	33.1	5.1	8.8	-	13.8	
			LOS	B	A	A		A	C	A	A		B	
			Ped LOS	B	A	B	B		B	A	B	B		
			Bicycle LOS	A	B	F	-		A	A	F	-		
	 NB I-229	Traffic Signal	Volume	595	1770	565	0	2930	1170	1155	870	0	3195	
			Delay (Sec.)	19.6	11.2	12.1	-	12.8	12.9	6.0	135.4	-	41.8	
			LOS	B	B	B		B	B	A	F		D	
			Ped LOS	B	A	C	B		B	A	C	B		
			Bicycle LOS	A	B	A	-		A	B	B	-		
	26th Street \& Southeastern Avenue	Traffic Signal	Volume	895	1540	1220	210	3865	1870	1140	535	920	4465	
			Delay (Sec.)	17.6	27.0	45.0	43.7	31.8	20.1	24.8	42.1	55.5	32.7	
			LOS	B	C	D	D	C	C	C	D	E	C	
			Ped LOS	C	C	B	B		C	C	B	B		
			Bicycle LOS	A	B	B	A		B	B	A	A		
	26th Street \& Cleveland Avenue	Traffic Signal	Volume	820	1475	110	165	2570	1655	1105	85	350	3195	
			Delay (Sec.)	10.5	18.3	41.3	34.4	18.1	13.8	24.2	41.7	35.0	21.2	
			LOS	B	B	D	C	B	B	C	D	C	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		

Intersection Location		Traffic Control	Metric	Planning Year 2050										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
	Rice Street \& Lowell Avenue		Two-way Stop Control	Volume	450	1180	150	0	1780	1370	840	90	5	2305
				Delay (Sec.)	0.0	0.2	33.8	0.0	33.8	0.2	15.9	483.1	63.7	483.1
		LOS		A	A	D	A	D	A	C	F	F	F	
		Weighted Intersection Delay (Sec.)		-	-	-	-	2.98	-	-	-	-	24.91	
		Ped LOS		-	-	-	-		-	-	-	-		
		Bicycle LOS		-	-	-	-		-	-	-	-		
	Rice Street \&SB I-229	Traffic Signal	Volume	495	1630	0	250	2375	1330	1130	0	540	3000	
			Delay (Sec.)	15.9	13.2	-	69.7	20.1	20.7	25	-	52.2	28.2	
			LOS	B	B	NA	E	C	C	C	NA	D	C	
			Ped LOS	A	B	B	B		A	B	B	B		
			Bicycle LOS	A	B	-	F		B	B	-	F		
	Rice Street \&NB I-229	Traffic Signal	Volume	500	1235	810	585	3130	1575	930	500	885	3890	
			Delay (Sec.)	155.2	89.8	114.1	57.3	100.5	630.9	35.4	130.3	374.6	365.9	
			LOS	F	F	F	E	F	F	D	F	F	F	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	B	B		C	A	A	B		
	Rice Street \& Bahnson Avenue	Two-way Stop Control	Volume	540	1225	40	40	1845	1415	860	45	165	2485	
			Delay (Sec.)	1.1	0.1	55.2	44.8	55.2	0.1	1.0	1120.2	1601.5	1601.5	
			LOS	A	A	F	E	F	A	A	F	F	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	2.56	-	-	-	-	127.03	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	6th Street \& Lowell Avenue	Two-way Stop Control	Volume	560	1125	40	60	1785	1245	770	105	65	2185	
			Delay (Sec.)	0.2	0.4	156.7	83.7	156.7	0.4	0.8	1654.6	37.0	1654.6	
			LOS	A	A	F	F	F	A	A	F	E	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	6.64	-	-	-	-	81.12	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	6th Street \& Cleveland Avenue	Traffic Signal	Volume	570	1550	635	465	3220	1185	900	1010	750	3845	
			Delay (Sec.)	22.9	32.6	79.1	29.1	39.5	69.9	70.3	297.7	109.0	135.4	
			LOS	C	C	E	C	D	E	E	F	F	F	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	A	A	A		
	10th Street \& Jessica Avenue	Traffic Signal	Volume	1045	1935	205	0	3185	2165	1525	135	0	3825	
			Delay (Sec.)	5.1	7.2	24.9	-	7.7	12.4	5.0	40.3	-	10.8	
			LOS	A	A	C		A	B	A	D		B	
			Ped LOS	B	A	B	B		B	A	B	B		
			Bicycle LOS	A	B	F	-		B	B	F	-		
	10th Street \& Lowell Avenue	Traffic Signal	Volume	1070	1985	85	145	3285	2165	1805	110	255	4335	
			Delay (Sec.)	8.2	15.1	60.6	70.2	16.7	54.0	24.0	51.4	97.0	45.5	
			LOS	A	B	E	E	B	D	C	D	F	D	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	B	A	A		
	10th Street \& Conklin Avenue	Two-way Stop Control	Volume	1190	1985	170	10	3355	2365	1800	90	25	4280	
			Delay (Sec.)	-	-	25.7	25.8	25.8	-	-	83.9	24.2	83.9	
			LOS			D	D	D			F	C	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	1.38	-	-	-	-	1.91	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& I-229 SPUI	Traffic Signal	Volume	815	1725	620	225	3385	1565	1655	535	595	4350	
			Delay (Sec.)	149.2	51.4	154.2	48.9	100.6	73.8	49.2	45.7	127.9	68.2	
			LOS	F	D	F	D	F	E	D	D	F	E	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	B	A		B	B	A	B		
	 Blaine Avenue	Two-way Stop Control	Volume	1465	2485	10	0	3960	2840	2140	15	0	4995	
			Delay (Sec.)	-	-	16.3	-	16.3	-	-	46.3	-	46.3	
			LOS			C		C			E		E	
			Weighted Intersection Delay (Sec.)	-	-	-	-	0.04	-	-	-	-	0.14	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	10th Street \& Cleveland Avenue	Traffic Signal	Volume	1425	2000	640	610	4675	2775	1915	600	800	6090	
			Delay (Sec.)	37.3	164.0	145.0	313.6	146.1	17.0	181.3	174.9	300.0	140.0	
			LOS	D	F	F	F	F	B	F	F	F	F	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	B	B	B	B		C	B	B	B		

Intersection Location		Traffic Control	Metric	Planning Year 2050										
		AM Peak Hour		PM Peak Hour										
		EB		WB	NB	SB	Overall	EB	WB	NB	SB	Overall		
			Traffic Signal	Volume	1170	2035	20	100	3325	2350	1900	60	195	4505
				Delay (Sec.)	4.7	10.1	69.6	83.4	11.0	6.6	12.5	66.4	71.9	13.9
		LOS		A	B	E	F	B	A	B	E	E	B	
		Ped LOS		B	B	B	B		B	B	B	B		
		Bicycle LOS		B	B	A	A		C	B	A	A		
	12th Street \& Lowell Avenue	Two-way Stop Control	Volume	190	540	70	60	860	720	325	60	160	1265	
			Delay (Sec.)	0.6	0.1	17.0	21.0	21.0	0.2	0.6	25.8	179.6	179.6	
			LOS	A	A	C	C	C	A	A	D	F	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	3.04	-	-	-	-	24.21	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	12th Street \& Cleveland Avenue	Traffic Signal	Volume	165	440	585	270	1460	1000	270	445	640	2355	
			Delay (Sec.)	11.4	17.5	15.5	11.7	14.9	39.6	15.1	25.8	32.6	31.6	
			LOS	B	B	B	B	B	D	B	C	C	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	B	A		B	A	A	B		
	 Southeastern Avenue	Traffic Signal	Volume	400	435	1785	115	2735	1990	295	790	140	3215	
			Delay (Sec.)	64.2	60.3	273.8	146.9	198.4	377.1	32.2	55.8	212.3	256.2	
			LOS	E	E	F	F	F	F	C	E	F	F	
			Ped LOS	B	B	B	B		B	B	B	C		
			Bicycle LOS	A	A	C	A		D	A	B	A		
	18th Street \& Cleveland Avenue	Traffic Signal	Volume	165	395	220	240	1020	730	180	310	520	1740	
			Delay (Sec.)	14.1	20.1	8.9	9.2	14.1	19.3	11.5	17.6	21.4	18.8	
			LOS	B	C	A	A	B	B	B	B	C	B	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	A	A	A		B	A	A	A		
	26th Street \& Van Eps Avenue	Traffic Signal	Volume	465	915	15	45	1440	590	625	15	25	1255	
			Delay (Sec.)	3.2	7.0	29.2	29.9	6.8	3.1	4.3	24.6	24.9	4.4	
			LOS	A	A	C	C	A	A	A	C	C	A	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	B	A	A		
	 Frederick Drive	Two-way Stop Control	Volume	450	1025	85	25	1585	565	770	180	25	1540	
			Delay (Sec.)	0.1	1.1	33.4	77.9	77.9	0.2	1.8	28.9	96.5	96.5	
			LOS	A	A	D	F	F	A	A	D	F	F	
			Weighted Intersection Delay (Sec.)	-	-	-	-	3.76	-	-	-	-	5.92	
			Ped LOS	-	-	-	-		-	-	-	-		
			Bicycle LOS	-	-	-	-		-	-	-	-		
	26th Street \&SB I-229	Traffic Signal	Volume	500	1770	365	0	2635	710	1260	730	0	2700	
			Delay (Sec.)	18.5	7.5	12.0	-	10.1	34.2	4.2	10.9	-	13.0	
			LOS	B	A	B		B	C	A	B		B	
			Ped LOS	B	A	B	B		B	A	B	B		
			Bicycle LOS	A	B	F	-		A	B	F	-		
	 NB I-229	Traffic Signal	Volume	625	1895	705	0	3225	1195	1275	1085	0	3555	
			Delay (Sec.)	20.7	12.3	17.3	-	14.9	15.4	8.3	193.6	-	68.5	
			LOS	C	B	B		B	B	A	F		E	
			Ped LOS	B	A	C	B		B	A	C	B		
			Bicycle LOS	A	B	B	-		A	B	B	-		
	26th Street \& Southeastern Avenue	Traffic Signal	Volume	1025	1660	1815	390	4890	2090	1230	855	1510	5685	
			Delay (Sec.)	32.2	52.5	80.3	66.2	59.9	26.6	41.8	61.1	90.6	56.2	
			LOS	C	D	F	E	E	C	D	E	F	E	
			Ped LOS	C	C	B	B		C	C	B	B		
			Bicycle LOS	A	B	B	A		B	B	A	B		
	26th Street \& Cleveland Avenue	Traffic Signal	Volume	1020	1610	140	175	2945	1870	1195	90	390	3545	
			Delay (Sec.)	11.9	21.9	57.6	48.6	21.8	11.4	25.5	54.1	52.3	23.5	
			LOS	B	C	E	D	C	B	C	D	D	C	
			Ped LOS	B	B	B	B		B	B	B	B		
			Bicycle LOS	A	B	A	A		B	B	A	A		

Appendix E - Build Concept

Appendix F - HCS Reports

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information
Analyst		Intersection	10th St \& Conklin Ave
Agency/Co.	$10 / 2 / 2020$	Jurisdiction	
Date Performed	2021	East/West Street	10th Street
Analysis Year	AM Peak Hour - Existing	North/South Street	Conklin Avenue
Time Analyzed	East-West	Peak Hour Factor	0.80
Intersection Orientation	Analysis Time Period (hrs)	0.25	
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	1		0	0	1
Configuration			T	TR			T	TR				R				R
Volume (veh/h)			696	7			1210	3				117				7
Percent Heavy Vehicles (\%)												2				2
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized									No				No			
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)												7.1				7.1
Critical Headway (sec)												7.14				7.14
Base Follow-Up Headway (sec)												3.9				3.9
Follow-Up Headway (sec)												3.92				3.92

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	HR Green	Intersection	10th St \& Blaine Ave
Agency/Co.	$10 / 2 / 2020$	Jurisdiction	
Date Performed	2021	East/West Street	10th Street
Analysis Year	AM Peak Hour - Existing	North/South Street	Blaine Avenue
Time Analyzed	East-West	Peak Hour Factor	0.83
Intersection Orientation	I-229/10th Street IMJR	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	3	0		0	0	1		0	0	0	
Configuration			T	TR			T					R					
Volume (veh/h)			840	34			1426					6					
Percent Heavy Vehicles (\%)												2					
Proportion Time Blocked																	
Percent Grade (\%)									0								
Right Turn Channelized									No								
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information
Analyst		Intersection	10th St \& Conklin Ave
Agency/Co.	$10 / 2 / 2020$	Jurisdiction	
Date Performed	2021	East/West Street	10th Street
Analysis Year	PM Peak Hour - Existing	North/South Street	Conklin Avenue
Time Analyzed	East-West	Peak Hour Factor	0.87
Intersection Orientation	Analysis Time Period (hrs)	0.25	
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	1		0	0	1
Configuration			T	TR			T	TR				R				R
Volume (veh/h)			1410	17			1013	15				60				16
Percent Heavy Vehicles (\%)												2				2
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized									No				No			
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)												7.1				7.1
Critical Headway (sec)												7.14				7.14
Base Follow-Up Headway (sec)												3.9				3.9
Follow-Up Headway (sec)												3.92				3.92

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	HR Green	Intersection	10th St \& Blaine Ave
Agency/Co.	Jurisdiction		
Date Performed	$10 / 2 / 2020$	East/West Street	10th Street
Analysis Year	2021	North/South Street	Blaine Avenue
Time Analyzed	PM Peak Hour - Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	I-229/10th Street IMJR		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	3	0		0	0	1		0	0	0	
Configuration			T	TR			T					R					
Volume (veh/h)			1686	50			1128					9					
Percent Heavy Vehicles (\%)												2					
Proportion Time Blocked																	
Percent Grade (\%)									0								
Right Turn Channelized									No								
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

General Information

Intersection Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h

| HRG |
| :--- | :--- |
| RL |
| SIOUX FALLS |
| 26TH STREET |
| I-229 SB |
| I-229/10TH ST IMJR |

Analysis Date	Jul 29, 2020	A
Time Period		PH
Analysis Year	2020	A

Duration, h	0.250
Area Type	Other
PHF	0.90
Analysis Period	$1>7: 00$

File Name AMpeak.xus

Signal Information

Cycle, s	130.0	Reference Phase	6
Offset, s	16	Reference Point	Begin
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase		2	1	6		8		
Case Number		7.3	1.0	4.0		9.0		
Phase Duration, s		45.0	62.0	107.0		23.0		
Change Period, ($Y+R{ }_{c}$), s		5.5	5.5	5.5		4.9		
Max Allow Headway (MAH), s		0.0	2.2	0.0		2.3		
Queue Clearance Time ($g s$), s			18.0			20.1		
Green Extension Time ($g e$), s		0.0	1.3	0.0		0.0		
Phase Call Probability			1.00			1.00		
Max Out Probability			0.00			1.00		

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	2.30	B	0.65	A	2.48	B	2.33	B
Bicycle LOS Score / LOS	0.90	A	1.92	B		F		

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information	
Analyst		Intersection	10th St \& Conklin Ave	
Agency/Co.	$10 / 2 / 2020$	Jurisdiction		
Date Performed	2050	East/West Street	10th Street	
Analysis Year	AM Peak Hour - No Build	North/South Street	Conklin Avenue	
Time Analyzed	East-West	Peak Hour Factor	0.92	
Intersection Orientation	I-229/10th Street IMJR	Analysis Time Period (hrs)	0.25	
Project Description				

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	1		0	0	1
Configuration			T	TR			T	TR				R				R
Volume (veh/h)			1180	10			1975	10				170				10
Percent Heavy Vehicles (\%)												2				2
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized									No				No			
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)												7.1				7.1
Critical Headway (sec)												7.14				7.14
Base Follow-Up Headway (sec)												3.9				3.9
Follow-Up Headway (sec)												3.92				3.92

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information
Analyst		Intersection	10th St \& Blaine Ave
Agency/Co.	$10 / 2 / 2020$	Jurisdiction	
Date Performed	2050	East/West Street	10th Street
Analysis Year	AM Peak Hour - No Build	North/South Street	Blaine Avenue
Time Analyzed	East-West	Peak Hour Factor	0.92
Intersection Orientation	I-229/10th Street IMJR	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	3	0		0	0	1		0	0	0	
Configuration			T	TR			T					R					
Volume (veh/h)			1415	50			2485					10					
Percent Heavy Vehicles (\%)												2					
Proportion Time Blocked																	
Percent Grade (\%)									0								
Right Turn Channelized									No								
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information	
Analyst		Intersection	10th St \& Conklin Ave	
Agency/Co.	$10 / 2 / 2020$	Jurisdiction		
Date Performed	2050	East/West Street	10th Street	
Analysis Year	PM Peak Hour - No Build	North/South Street	Conklin Avenue	
Time Analyzed	East-West	Peak Hour Factor	0.92	
Intersection Orientation	I-229/10th Street IMJR	Analysis Time Period (hrs)	0.25	
Project Description				

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	1		0	0	1
Configuration			T	TR			T	TR				R				R
Volume (veh/h)			2340	25			1780	20				90				25
Percent Heavy Vehicles (\%)												2				2
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized									No				No			
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)												7.1				7.1
Critical Headway (sec)												7.14				7.14
Base Follow-Up Headway (sec)												3.9				3.9
Follow-Up Headway (sec)												3.92				3.92

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		HR Green	Site Information
Analyst		Intersection	10th St \& Blaine Ave
Agency/Co.	$10 / 2 / 2020$	Jurisdiction	
Date Performed	2050	East/West Street	10th Street
Analysis Year	PM Peak Hour - No Build	North/South Street	Blaine Avenue
Time Analyzed	East-West	Peak Hour Factor	0.92
Intersection Orientation	I-229/10th Street IMJR	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	3	0		0	0	1		0	0	0	
Configuration			T	TR			T					R					
Volume (veh/h)			2760	85			2140					15					
Percent Heavy Vehicles (\%)												2					
Proportion Time Blocked																	
Percent Grade (\%)									0								
Right Turn Channelized									No								
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

HCS Signalized Intersection Results Summary

HCS Signalized Intersection Results Summary

HCS Signalized Intersection Results Summary

Appendix G - Concept Evaluation Memo

MEMO

TO:
Steve Gramm
South Dakota Department of Transportation
FROM:

DATE:
April 9, 2021
RE:
I-229 Exit 6 (10th Street) Interchange Study - Build Concepts SD DOT Project Number: PL0194(98) P, PCN 07P7

This technical memo serves to document the evaluation and refinement of Build concepts at the I-229 Exit 6 interchange with 10th Street in the City of Sioux Falls, South Dakota. The location of the study intersections and features of the surrounding area can be seen in the following figure.

Figure 1: I-229 Exit 6 Study Area

HRGreen

I-229 \& 10 ${ }^{\text {th }}$ Street (Exit 6)

The existing $10^{\text {th }}$ Street corridor is an urban principal arterial with a 4-lane divided roadway within the interchange area. The existing service interchange at $\mathrm{I}-229$ \& $10^{\text {th }}$ Street is a Single Point Urban Interchange (SPUI) that operates under traffic signal control. The nearest intersection west of the interchange is approximately 275 feet at Conklin Avenue which is a Right-In/Right Out (RI/RO) access, the nearest full access intersection is approximately 600 feet away at Lowell Avenue (traffic signal control). The nearest intersection east of the interchange is approximately 375 feet at Blaine Avenue which is a RI/RO access, the nearest full access intersection is approximately 700 feet away at Cleveland Avenue (traffic signal control). The study intersections can be seen in the figure below.

Figure 2: $\mathbf{1 0}^{\text {th }}$ Street Corridor/Interchange

Build Concepts

The two Build Concepts carried forward from the previously completed I-229 Major Improvement Study (MIS) were evaluated and refined to fulfill the SDDOT traffic operations criteria. Build Concepts included a Diverging Diamond Interchange (DDI) and a SPUI. The 2050 future year traffic volumes were applied to these Build Concepts and an iterative process of traffic operations analysis and redesign was performed to adapt the concepts to the traffic needs. This process is described in greater detail in the following section.

HRGreen

Operations Analysis Results

Traffic analyses were conducted for 2050 Future Year conditions under scenarios for No-Build and for each Build Concept. Traffic analysis for the study area intersections was performed using Highway Capacity Software version 7.9 (HCS7) which executes methodology outlined in the $6^{\text {th }}$ edition of the Highway Capacity Manual (HCM6).

The SDDOT has established a minimum LOS C on urban interstate highway corridors. At ramp terminal intersections, the overall intersection must be at a LOS C or better; however, individual movements may operate at a LOS D. At other arterial intersections, the overall intersection must be a LOS D or better; however, individual movements may operate at a LOS E if signalized or LOS F if unsignalized. Signalized intersections that were modified by the project cannot operate with a volume to capacity ratio greater than 1.0 for any movement. If arterial intersections were shown to have any movements with a queue storage ratio greater than 1.0 than that intersection will be reported as LOS F.

No-Build Condition

The No-Build Condition intersection capacity analysis considered forecasted year traffic volumes, and the existing lane configurations and intersection traffic control. The following table shows the intersection LOS, delay, and expected volume to capacity (v / c) for the critical movement at each intersection during the AM and PM peak hours. The v / c ratios are representative of the worst-case turning movement at each approach.

Table 1: No-Build Condition Operations

Intersection	Control Type	Intersection LOS I Delay (sec/veh)			EB Leg		WB Leg		NB Leg		SB Leg	
					LOS	V/C	LOS	V/C	LOS	V/C	LOS	V/C
$10^{\text {th }}$ Street \& Lowell Avenue	Signal	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & B \\ & D \end{aligned}$	$\begin{aligned} & 16.7 \\ & 45.5 \end{aligned}$	A	$\begin{aligned} & 0.42 \\ & 1.04 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.63 \\ & 1.01 \end{aligned}$	$\begin{aligned} & E \\ & D \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.32 \end{aligned}$	$\begin{aligned} & E \\ & F \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.93 \end{aligned}$
$10^{\text {th }}$ Street \& Conklin Avenue	TWSC	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 25.8 \\ & 83.9 \end{aligned}$		-	-	-	$\begin{aligned} & D \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.73 \end{aligned}$	$\begin{aligned} & D \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.13 \end{aligned}$
$\begin{gathered} 10^{\text {th }} \text { Street \& } \\ \mid-229 \end{gathered}$	Signal	AM PM	$\begin{aligned} & F \\ & E \end{aligned}$	$\begin{gathered} 100.6 \\ 68.2 \end{gathered}$	F	$\begin{aligned} & 1.46 \\ & 1.20 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.16 \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.12 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.79 \\ & 1.26 \end{aligned}$
$10^{\text {th }}$ Street \& Blaine Avenue	TWSC	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	C	$\begin{aligned} & 16.3 \\ & 46.3 \end{aligned}$	-	-	-	-	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$		$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	
$10^{\text {th }}$ Street \& Cleveland Avenue	Signal	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	F	$\begin{aligned} & 146.1 \\ & 140.0 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 1.24 \\ & 0.95 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 1.27 \\ & 1.35 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.46 \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 1.64 \\ & 1.56 \end{aligned}$

** RED = Inadequate LOS or V/C > 1.0
** ORANGE = V/C over 0.90
The results of the No-Build Condition analysis show that there were undesirable traffic delays expected at all intersections within the study area. The majority of the study intersections operated at a Level of Service E or worse during at least one of the peak hour time periods with all intersections failing due to vehicle delay or v/c ratio criteria. The intersection of $10^{\text {th }}$ Street \& $\mathrm{I}-229$ experienced LOS F and LOS E during both the AM and PM peak hours, respectively.

DDI Condition

The DDI Concept Condition intersection capacity analysis considered forecasted future year traffic volumes, and the modified concept condition lane configurations and intersection traffic control. The following table shows the

HRGreen
intersection LOS, delay, and expected volume to capacity (v/c) for the critical movement at each intersection during the AM and PM peak hours. The v/c ratios are representative of the worst-case turning movement at each approach. The intersection approaches with movements that were nearing a v/c ratio of 1.0 (highlighted in orange) indicate that it was near capacity.

Table 2: DDI Concept Operations

Intersection	Control Type	Intersection LOS / Delay (sec/veh)			EB Leg		WB Leg		NB Leg		SB Leg	
					LOS	V/C	LOS	V/C	LOS	V/C	LOS	V/C
$10^{\text {th }}$ Street \& Lowell Avenue	Signal	AM PM		$\begin{aligned} & 19.2 \\ & 30.7 \end{aligned}$	$\begin{aligned} & B \\ & D \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.89 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.51 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.78 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.48 \end{aligned}$
$10^{\text {th }}$ Street \& Conklin Avenue	TWSC	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	-					-	-	-	-	-
$\begin{gathered} 10^{\text {th }} \text { Street \& } \\ \text { SB I-229 } \end{gathered}$	SB DDI Signal	AM PM		$\begin{aligned} & 12.2 \\ & 18.5 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & 0.64 \\ & 0.98 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.89 \end{aligned}$		-	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.79 \end{aligned}$
$\begin{gathered} 10^{\text {th }} \text { Street \& } \\ \text { NB I-229 } \end{gathered}$	NB DDI Signal	AM PM		$\begin{aligned} & 17.9 \\ & 23.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.90 \end{aligned}$	$\begin{aligned} & C \\ & C \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.98 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.76 \end{aligned}$	-	-
$10^{\text {th }}$ Street \& Blaine Avenue	TWSC	AM PM	-						-	-	-	-
$10^{\text {th }}$ Street \& Cleveland Avenue	Signal	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$		$\begin{aligned} & 42.4 \\ & 46.2 \end{aligned}$	$\begin{aligned} & C \\ & C \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.87 \end{aligned}$	$\begin{aligned} & D \\ & E \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.99 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.81 \end{aligned}$	$\begin{aligned} & D \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.84 \end{aligned}$

** RED = Inadequate LOS or V/C > 1.0
** ORANGE = V/C over 0.90

The results of the DDI Concept Condition analysis show that acceptable traffic delays at intersections within the study area can be obtained with the DDI Concept. The operational results depicted were the result of multiple iterations of roadway lane assignment and intersection signal timing plan evaluations in an effort to minimize the roadway cross-section needs while fulfilling the capacity demands.

The number of lanes within the DDI that were determined necessary to accommodate the anticipated traffic demand and obtain sufficient traffic operations resulted in 4 eastbound through lanes and 3 westbound through lanes at the west DDI crossover intersection and 4 eastbound through lanes and 4 westbound through lanes at the east DDI crossover intersection. The roadway cross section and intersection turn lanes necessary to provide adequate capacity under the DDI concept can be seen in Table 3 and depicted graphically in Appendix A.

Table 3: DDI Concept Design Requirements

Intersection	Control Type	Intersection Movement	EB Leg Required	WB Leg Required	NB Leg Required	SB Leg Required
$1 \mathbf{1 0}^{\text {th }}$ Street \&	SB DDI	LT	-	1	-	2
SB I-229	Signal	TH	4	3	-	-
$10^{\text {th }}$ Street \&	NB DDI	LT	Shared	-	-	1
NB I-229	Signal	TH	4	4	-	-

HRGreen

SPUI Condition

The SPUI Concept Condition intersection capacity analysis considered forecasted future year traffic volumes, and the modified concept condition lane configurations and intersection traffic control. The following table shows the intersection LOS, delay, and expected volume to capacity (v/c) for the critical movement at each intersection during the AM and PM peak hours. The v / c ratios are representative of the worst-case turning movement at each approach. The intersection approaches with movements that were nearing a v/c ratio of 1.0 (highlighted in orange) indicate that it was near capacity.

Table 4: SPUI Concept Operations

Intersection	Control Type	Intersection LOS / Delay (sec/veh)			EB Leg		WB Leg		NB Leg		SB Leg	
					LOS	V/C	LOS	V/C	LOS	V/C	LOS	V/C
$10^{\text {th }}$ Street \& Lowell Avenue	Signal	AM PM	B	$\begin{aligned} & 10.6 \\ & 17.4 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.70 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.83 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.39 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.72 \end{aligned}$
$10^{\text {th }}$ Street \& Conklin Avenue	TWSC	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	-			-	-	-	-	-	-	-
$\begin{gathered} 10^{\text {th }} \text { Street \& } \\ \mathrm{I}-229 \end{gathered}$	SPUI Signal	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	B	$\begin{aligned} & 18.0 \\ & 22.6 \end{aligned}$	$\begin{aligned} & C \\ & C \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.93 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.74 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.83 \end{aligned}$
$10^{\text {th }}$ Street \& Blaine Avenue	TWSC	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	-			-		-	-	-	-	-
$10^{\text {th }}$ Street \& Cleveland Avenue	Signal	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	C	$\begin{aligned} & 20.7 \\ & 21.1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.69 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.75 \end{aligned}$	$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.78 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.74 \end{aligned}$

** RED = Inadequate LOS or V/C > 1.0
** ORANGE $=$ V/C over 0.90
The results of the SPUI Concept Condition analysis show that acceptable traffic delays at intersections within the study area can be obtained with the SPUI Concept. The operational results depicted were the result of multiple iterations of roadway lane assignment and intersection signal timing plan evaluations in an effort to minimize the roadway cross-section needs while fulfilling the capacity demands.

The number of lanes at the SPUI that were necessary to accommodate the anticipated traffic demand and obtain sufficient traffic operations resulted in 3 eastbound through lanes and 3 westbound through lanes with dual left-turn lanes needed. The roadway cross section and intersection turn lanes necessary to provide adequate capacity under the SPUI concept can be seen in Table 5 and depicted graphically in Appendix A.

Table 5: SPUI Concept Design Requirements

Intersection	Control Type	Intersection Movement	EB Leg Leqes Required	WB Leg Required	NB Leg Required	SB Leg Required
$1 \mathbf{1 0}^{\text {th }}$ Street \&	SPUI	LT	2	2	2	2
$\mathbf{I - 2 2 9}$	Signal	TH	3	3	-	-

HRGreen

Summary

The traffic operations analysis was used as a tool to assist in the refinement of the DDI and SPUI concepts that were retained from a previous study. The traffic operations analysis provided feedback to the design team informing the number of lanes necessary to provide capacity as well as the number of turn lanes and length of storage required at turn bays.

The traffic operations analysis has shown the expected delays from each of the revised Build Concept conditions. Overall, it can be said that both of the Build Concepts provide reduced delays at intersections within the study area when compared to the No-Build condition.

When comparing the two Build Concepts, it can be seen that the SPUI concept was able to provide reduced delays compared to the DDI Concept. The difference in traffic operations between concepts can be attributed to the conflicting traffic volumes at the interchange, the intersection spacing, and the available traffic signal cycle lengths. The DDI concept has a higher conflicting volume of traffic than the SPUI concept, has more closely spaced signalized intersections than the SPUI, and cannot operate under the same cycle length as adjacent intersections. The combination of these elements contributed to the need for additional travel lanes at each of the crossover intersections to accommodate the traffic demand.

A secondary analysis was conducted to evaluate whether allowing a relaxed interchange ramp delay standard of achieving LOS D or better at the interchange ramp intersections would reduce the number of required travel lanes. It was determined that the controlling traffic operations metric that most influenced design was the v/c ratio and reducing the delay criteria did not provide opportunity to eliminate any travel lanes.

The refined preliminary design for each Build concept can be seen in the Appendix A.

HRGreen

APPENDIX A: Build Concepts

Appendix H - Safety Memo

Building a Better World for All of Us ${ }^{\circ}$

DRAFT MEMORANDUM

TO: Steve Gramm South Dakota Department of Transportation
FROM: Graham Johnson, PE (SD, MN, IA), PTOE Justin Anibas, EIT
DATE: November 18, 2020
RE: I-229 Exit 6 (10th Street) Interchange Project - Safety Memo SEH No. HRGSP 156524

This technical memorandum provides the findings related to the analysis of the crash history for the I-229 Exit 6 Interchange project. The project area includes mainline I-229 as well as Rice Street, $6{ }^{\text {th }}$ Street, $10^{\text {th }}$ Street, $12^{\text {th }}$ Street, $18^{\text {th }}$ Street, Southeastern Avenue, and $26^{\text {th }}$ Street in Sioux Falls, South Dakota. This includes I-229 at the Exit 5, Exit 6, and Exit 7 interchange area connections. The purpose is to highlight areas with existing safety concerns in the project area.

Figure 1 shows the project area, which includes Mainline I-229, 10 ${ }^{\text {th }}$ Street (Exit 6 Interchange), and several other roadways that cross I-229.

TABLE OF CONTENTS

Crash Data 3
Mainline l-229 4
I-229 Ramps 7
Intersection Crashes 9
Segment Crashes 16
Results 18

Figure 1 Project Location

CRASH DATA

Crash data from January 1, 2015 through December 31, 2019 was provided by the South Dakota Department of Transportation (SDDOT). The type and severity of crashes were reviewed, and crash rates were calculated for each study intersection. There were a total of 1,632 crashes within the project area that included 353 Mainline $\mathrm{I}-229,47$ crashes along the freeway ramps, and 1,232 crashes along the project roadways and intersections.

Crash severity is separated into six categories based on injuries sustained during the crash.

- Fatal - Crash that results in death.
- Severity A - Crash that results in an incapacitating injury.
- Severity B - Crash that results in a non-incapacitating injury.
- Severity C - Crash that results in possible injury.
- Property Damage - Crash that results in property damage only, with no injuries.
- Wild Animal Hit - Crash where a wild animal was hit; with no injuries to vehicle drivers/passengers.

The crash rate at each intersection or segment is expressed as a number of crashes per million entering vehicles (MEV). A critical crash rate is a statistical rate that is unique to each intersection or segment and is based on vehicular exposure and the average crash rate for similar facility; the critical crash rate provides a statistical threshold for screening intersections and segment safety concerns.

The critical index is the crash rate divided by the critical crash rate, a ratio of the observed crash rate to the critical crash rate. An intersection or segment with a crash rate higher than the critical rate (critical index >1) can indicate a safety concern and the site should be further reviewed; a site with a critical index below 1.0 implies that the site does not deviate significantly from the statewide trends.

The following sections provide a summary of the mainline I-229 crashes, I-229 ramp crashes, intersection crashes, and arterial segment crashes.

The attached Tables A1a through A2b summarize the crashes along Mainline I-229 and the l-229 ramps by crash severity and general crash diagram. The attached Tables B1a through B2b summarize the crashes at each intersection and along each roadway segment by crash severity and general crash diagram.

The attached Figures A1-A3 represents the locations of all the crashes in the project area.

Page 4

MAINLINE I-229

There were a total of 353 crashes along Mainline I-229 from south of Exit 5 to north of Exit 7 in the 5 -year period; directionally it is virtually split with 178 northbound crashes and 175 southbound crashes.

For this analysis, merge/diverge segments were considered to be either the taper area of the exit/entrance ramp or within 750 feet of the ramp gore if the ramp is a lane drop or lane add. The 750 feet assumption was based on the observation that many of the crashes occurred within 750 feet of ramp entrance or exit area. The only exception are the southern ramps of Exit 6 which have approximately 1,400' acceleration and deceleration lanes.

Table 1 summarizes the crashes by severity for each I-229 segment. A brief summary of the crash trends found in the crash information follows. This includes a summary of any mainline I-229 segments with a crash rate that exceeds the calculated critical rate or that had a fatal/severity A crash during the 5-year analysis period.

Table 1 Mainline I-229 Crashes

	Description	Crash Severity							Crash Rate Information		
	Segment	Fatal	A	B	c	PD	Wild Animal	Total	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \end{aligned}$	Critical Rate	Critical Index
	Between Exits 4 \& 5*	0	0	1	0	3	0	4	0.42	1.93	0.22
	Exit 5 Diverge	0	0	0	1	9	1	11	1.91	2.21	0.87
	Exit 5 between Ramps	0	0	0	0	5	3	8	0.90	1.97	0.46
	Exit 5 Merge	0	0	0	0	5	2	7	1.17	2.18	0.54
	Between Exits 5 \& 6	1	2	3	2	33	4	45	1.58	1.54	1.03
	Exit 6 Diverge	0	1	1	3	18	1	24	2.63	1.95	1.35
	Exit 6 between Ramps	0	0	0	0	8	0	8	0.83	1.92	0.43
	Exit 6 Merge	0	0	1	1	4	0	6	1.42	2.42	0.59
	Between Exits 6 \& 7	0	0	1	3	9	9	22	1.08	1.63	0.66
	Exit 7 Diverge	0	1	0	0	3	6	10	2.36	2.42	0.98
	Exit 7 between Ramps	0	0	0	0	3	4	7	1.10	2.15	0.51
	Exit 7 Merge	0	0	1	0	19	6	26	6.73	2.49	2.70
	Exit 7 Diverge	0	0	0	1	5	2	8	2.07	2.49	0.83
	Exit 7 between Ramps	0	0	0	0	4	3	7	1.22	2.21	0.55
	Exit 7 Merge	0	0	2	1	18	1	22	5.19	2.42	2.15
	Between Exits 7 \& 6	0	0	1	2	9	13	25	1.33	1.66	0.80
	Exit 6 Diverge	0	0	1	1	12	1	15	3.54	2.42	1.46
	Exit 6 between Ramps	0	0	2	2	10	1	15	1.77	1.99	0.89
	Exit 6 Merge	0	0	0	0	18	0	18	1.53	1.84	0.83
	Between Exits 6 \& 5	1	0	2	4	30	0	37	1.36	1.55	0.88
	Exit 5 Diverge	0	0	0	0	3	1	4	1.48	2.80	0.53
	Exit 5 between Ramps	0	0	0	0	2	1	3	0.51	2.20	0.23
	Exit 5 Merge	0	0	0	0	7	3	10	1.73	2.21	0.78
	Between Exits 5 \& 4*	0	0	1	0	6	4	11	1.21	1.95	0.62
TOTAL		2	4	17	21	243	66	353	n/a	n/a	n/a

- All mainline segments are Urban Interstate with a Statewide Average Crash Rate of 1.03.
- Bold/Shaded indicates a calculated crash rate that is at or exceeding the critical rate.
- * Does not include northbound Merge or southbound Diverge crashes at Exit 4.

Page 5

Mainline I-229 Crash Trends

- Approximately 64% of the Mainline I-229 crashes were single vehicle (ran off road, spin outs, etc.) or wild animal hit crashes, which means only 36% of crashes along Mainline $\mathrm{I}-229$ involve two vehicles colliding with one another.
- Approximately 63% of the crashes on Mainline I-229 occurred during daylight conditions, with the remaining 37% occurring when it was dark.
- Approximately 54% of the crashes on Mainline I-229 occurred when the roadway surface was dry, with the remaining 46% occurring when the roadway was wet (12\%) or snowy/icy (34\%).
- Approximately 48% of the crashes on Mainline I-229 occurred during the AM peak period (6-9 AM) and the PM peak period (3-6 PM).
- Approximately 47% of crashes occurred between four months of November through February, during the typical winter months.
- There were a total of 2 fatal and 4 severity A crashes along Mainline l-229 between 2015 through 2019.

Northbound I-229 Crashes

- Northbound I-229 between Exits 5 \& 6 - Mainline Segment

Total Crashes - $45 \quad$ Crash Rate - $1.58 \quad$ Critical Crash Rate - $1.54 \quad$ Critical Index - 1.03

- 45 crashes occurred along this 0.83 -mile segment of $1-229$ over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- A majority (54%) of the crashes along this segment of I-229 were concentrated at the 2 bridges over the Big Sioux River and Southeastern Avenue as well as the two curves in the roadway.
- 33 of the 45 crashes were single vehicle crashes (ran off road, spin outs, etc.)
- 31 of the 45 crashes occurred when the roadway was either wet, snowy, or icy, which indicates weather is likely a significant factor in crashes along this segment of I-229.
- There was 1 fatal crash along this segment of I-229; this crash involved a vehicle running off the roadway and rolling over when the roadway was icy.
- There were 3 incapacitating injury (severity A) crashes along this segment of I-229. Weather was a factor in all three of the incapacitating injury crashes. One was a single vehicle crash, one was an angle/sideswipe crash, and one was a rear end crash.
- Northbound I-229 Exit 6 Diverge - Diverge Segment

Total Crashes - $24 \quad$ Crash Rate - 2.63 \quad Critical Crash Rate - $\underline{1.95} \quad$ Critical Index - 1.35

- 24 crashes occurred near the exit ramp area along this 1,400 -foot segment of I-229 over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 10 of the 24 crashes along this segment of I-229 were rear end crashes, likely due to vehicles slowing for congestion either on the mainline or on the exit ramp. Following too closely was the most common contributing factor for these crashes.
- Weather was a factor in 9 of the 24 crashes along this segment of I-229
- Northbound I-229 Exit 7 Diverge - Diverge Segment

Total Crashes - $10 \quad$ Crash Rate - $2.36 \quad$ Critical Crash Rate - $2.42 \quad$ Critical Index - 0.98

- All 10 of the crashes along this segment were single vehicle (ran off road, spin outs, etc.) or wild animal hit crashes.
- There was 1 incapacitating injury (severity A) crash along this segment of l-229. This crash involved a vehicle running off the roadway and colliding with the guard rail/bridge.

Page 6

- Northbound I-229 Exit 7 Merge - Merge Segment

Total Crashes - $26 \quad$ Crash Rate - $6.73 \quad$ Critical Crash Rate - $2.49 \quad$ Critical Index - $\underline{2.70}$

- 26 crashes occurred in the entrance ramp area along this 750 -foot segment of I-229 over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- A majority (69%) of the crashes along this segment of I-229 were concentrated near the Big Sioux River bridge.
- 15 of the 26 crashes were single vehicle crashes (ran off road, spin outs, etc.)
- 17 of the 26 crashes occurred when the roadway was either snowy or icy, which indicates weather is likely a significant factor in crashes along this segment of l-229.

Southbound I-229 Crashes

- Southbound I-229 Exit 7 Merge - Merge Segment

Total Crashes - $22 \quad$ Crash Rate - 5.19 Critical Crash Rate - $\underline{\text { 2.42 }} \quad$ Critical Index - 2.15

- 22 crashes occurred in the entrance ramp area along this 750 -foot segment of I-229 over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 8 of the 22 crashes were sideswipe crashes, likely involving vehicles merging or changing lanes.
- 7 of the 22 crashes were single vehicle crashes (ran off road, spin outs, etc.).
- 10 of the 22 crashes occurred when the roadway was either wet, snowy, or icy. This segment of roadway includes a bridge over Rice Street, which could become slippery during adverse weather conditions.
- Southbound I-229 Exit 6 Diverge - Diverge Segment

$$
\text { Total Crashes - } 15 \quad \text { Crash Rate }-\underline{3.54} \quad \text { Critical Crash Rate - } \underline{2.42} \quad \text { Critical Index - } \underline{1.46}
$$

- 15 crashes occurred near the exit ramp area along this 750 -foot segment of I-229 over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 12 of the 15 crashes were single vehicle crashes (ran off road, spin outs, etc.).
- 7 of the 15 crashes occurred when the roadway was either wet, snowy, or icy.
- Southbound I-229 between Exits 6 \& 5 - Mainline Segment

$$
\text { Total Crashes - } 37 \quad \text { Crash Rate }-1.36 \quad \text { Critical Crash Rate }-1.55 \quad \text { Critical Index }-0.88
$$

- 23 of the 37 crashes were single vehicle crashes (ran off road, spin outs, etc.).
- $\quad 11$ of the 37 crashes were rear end crashes.
- 19 of the 37 crashes occurred when the roadway was either wet, snowy, or icy.
- There was 1 fatal crash along this segment of I-229. This crash involved a vehicle running off the roadway and hitting a guardrail.

While there are five areas above the critical crash rates, described above, there are also four additional areas that are within 15% of the critical rate. While not over the statistical critical rate, it does relate to additional areas having had safety concerns. These include:

- Northbound I-229 at Exit 5 Diverge
- Northbound I-229 at Exit 7 Diverge
- Southbound I-229 between Exit 6 Entrance and Exit Ramps
- Southbound I-229 between Exit 6 and Exit 5

Page 7

I-229 RAMPS

There were a total of 47 crashes on the I-229 Exit 5, Exit 6, and Exit 7 ramp connections during the 5 -year period. Below is a brief summary of the trends seen in these crashes as well as a summary of any l-229 Ramps with a crash rate that exceeds calculated critical rate or had a severe crash during the 5 -year analysis period. Table 2 summarizes the crashes by severity for each ramp along l-229.

For this analysis, ramp crashes did not include crashes that occurred at the intersections of the ramp terminals or along mainline l-229.

Table 2 I-229 Ramp Crashes

	Description	Crash Severity							Rate Information		
	Segment	Fatal	A	B	c	PD	Wild Animal	Total	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \end{aligned}$	Critical Rate	Critical Index
	Exit 5 Off Ramp	0	0	0	0	4	0	4	0.83	2.33	0.36
	Exit 5 On Ramp	0	0	1	1	11	0	13	7.67	3.33	2.30
	Exit 6 Off Ramp	0	0	0	0	2	0	2	0.57	2.57	0.22
	Exit 6 On Ramp	0	0	0	1	2	0	3	1.15	2.84	0.40
	Exit 7 Off Ramp	0	0	0	1	7	0	8	8.09	4.17	1.94
	Exit 7 On Ramp	0	1	0	0	1	0	2	1.51	3.68	0.41
	Exit 7 Off Ramp	0	0	0	0	0	0	0	0.00	3.54	0.00
	Exit 7 On Ramp	0	0	1	0	2	0	3	3.08	4.20	0.73
	Exit 6 Off Ramp	0	0	0	0	0	0	0	0.00	2.80	0.00
	Exit 6 On Ramp	0	0	0	1	8	0	9	4.92	3.24	1.52
	Exit 5 Off Ramp	0	0	0	0	1	0	1	1.63	5.19	0.31
	Exit 5 On Ramp	0	0	0	1	1	0	2	2.10	4.23	0.50
TOTAL		0	1	2	5	39	0	47			

- All mainline segments are Urban Interstate with a Statewide Average Crash Rate of 1.03.
- Bold/Shaded indicates a calculated crash rate that is at or exceeding the critical rate.

I-229 Ramp Crash Trends

- Approximately 74% of the I-229 ramp crashes were single vehicle (ran off road, spin outs, etc.), which means only 26% of crashes on the l-229 ramps involve two vehicles colliding with one another.
- Approximately 68% of the crashes on the I-229 ramps occurred during daylight conditions, with the remaining 32% occurring when it was dark.
- Approximately 55% of the crashes on the I-229 ramps occurred when the roadway surface was dry, with the remaining 45% occurring when the roadway was wet (9%) or snowy/icy (36%).
- Approximately 40% of the crashes on the I-229 Ramps occurred during the AM peak period (6-9 AM) and PM peak period (3-6 PM).
- Approximately 55% of crashes occurred between the four months of November through February, during the typical winter months.
- There was 1 severity A crash on the I-229 Ramps from 2015 through 2019.

Northbound I-229 Ramp Crashes

- Northbound I-229 Exit 5 On Ramp

Total Crashes - $13 \quad$ Crash Rate - $7.67 \quad$ Critical Crash Rate - $\underline{3.33} \quad$ Critical Index - $\underline{2.30}$

- 13 crashes occurred along this ramp over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- A majority of the crashes on this ramp occurred on the loop section.
- 12 of the 13 crashes were single vehicle crashes (ran off road, spin outs, etc.).
- 7 of the 13 crashes occurred when the roadway was either wet, snowy, or icy.
- Northbound I-229 Exit 7 Off Ramp

Total Crashes - $8 \quad$ Crash Rate - 8.09 Critical Crash Rate - 4.17 Critical Index - 1.94

- 8 crashes occurred along this ramp over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- All 8 of the crashes on this ramp occurred on the loop section and were single vehicle crashes (ran off road, spin outs, etc.).
- 4 of the 8 crashes occurred when the roadway was either snowy or icy.

- Northbound I-229 Exit 7 On Ramp

Total Crashes - $2 \quad$ Crash Rate - 1.51 Critical Crash Rate - $3.68 \quad$ Critical Index - 0.41

- Both of the crashes on this ramp were single vehicle crashes (ran off road, spin outs, etc.) and occurred when the roadway was dry.
- There was 1 incapacitating injury (severity A) crash on this ramp. This crash involved an intoxicated driver running off the roadway and rolling over.

Southbound I-229 Ramp Crashes

- Southbound I-229 Exit 6 On Ramp

Total Crashes - $9 \quad$ Crash Rate - $4.92 \quad$ Critical Crash Rate - $3.24 \quad$ Critical Index - $\mathbf{1 . 5 2}$

- 9 crashes occurred along this ramp over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 6 of the 9 crashes were rear end crashes, which indicates there may be congestion on this ramp.
- 3 of the 9 crashes were single vehicle crashes (ran off road, spin outs, etc.).
- 4 of the 9 crashes occurred when the roadway was either wet, snowy, or icy.

I-229 Exit 6 (10th Street) Interchange Project - Safety Memo
November 18, 2020
Page 9

INTERSECTION CRASHES

There were a total of 1,104 crashes at the 27 intersections (23 study intersections, 4 other intersections) analyzed as part of this project between 2015 and 2019. Non-study intersections with approximately 10 crashes in the 5year history were included in the intersection analysis. Table 3 summarizes the crashes by severity for each intersection.

Table 3 Intersection Crashes

- **Signalized Intersection
- Bold/Red Shaded indicates a calculated crash rate that is at or exceeding the critical rate.
- (2) Notes non-study intersections included.

Below is a brief summary of the trends seen in these crashes as well as a summary of all intersections and highlights locations where the crash rate exceeds the calculated critical rate.

Page 10

Intersection Trends

- Approximately 58% of the intersection crashes (638 out of 1,104) were rear end crashes. 97% of the rear end crashes occurred at the 16 signalized intersections analyzed. These crashes are likely the result of slowing traffic or congestion at the signalized intersections.
- Approximately 68% of all rear end crashes occurred in the eastbound/westbound direction, while the remaining 32% were in the northbound/southbound direction.
- Approximately 30% of the intersection crashes (332 out of 1,148) were right-angle crashes.
- Approximately 73% of the intersection crashes occurred during daylight conditions, with the remaining 27% occurring under dark conditions.
- Approximately 69% of the crashes occurred when the roadway surface was dry, with the remaining 31% occurring when the roadway was wet (16\%) or snowy/icy (15\%).
- Approximately 46% of the crashes occurred during the AM peak (6-9 AM) and PM peak (3-6 PM) periods with 31% of all crashes occurring during the PM peak period.
- The winter months (November through February) had generally the highest number of crashes, but overall there was not a significant difference in crashes by month.
- There were a total of 8 severity A crashes and no fatal crashes from 2015 through 2019.
- There were a total of 7 crashes involving pedestrian or bicyclists at the 27 intersections analyzed as part of this study.

Rice Street Crashes (4 Intersections)

- Rice Street at Lowell Avenue (Minor Street Stop Control)

Total Crashes - $9 \quad$ Crash Rate - $0.38 \quad$ Critical Crash Rate - $0.56 \quad$ Critical Index $\mathbf{- 0 . 6 7}$

- 6 of the 9 crashes were right-angle crashes. 5 of the right-angle crashes involved northbound left turning vehicles and eastbound through vehicles.
- Rice Street at l-229 Southbound Ramp Terminal (Traffic Signal)

$$
\text { Total Crashes - } 14 \quad \text { Crash Rate }-0.51 \quad \text { Critical Crash Rate }-0.99 \quad \text { Critical Index }-0.52
$$

- 8 of the 14 crashes were rear end crashes, likely the result of backups at the intersection. 4 of the rear end crashes were in the eastbound direction and 4 were in the southbound direction.
- There was 1 incapacitating injury (severity A) crash at this intersection. This crash involved an eastbound left turning vehicle failing to yield to a westbound vehicle.
- Rice Street at l-229 Northbound Ramp Terminal/Cleveland Avenue (Traffic Signal) Total Crashes - $51 \quad$ Crash Rate - $1.53 \quad$ Critical Crash Rate - 0.95 Critical Index - 1.61
- 51 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 24 of the 51 crashes were right-angle crashes. 18 involved vehicles taking a left turn with 8 involving eastbound and westbound vehicles together (no protected left phase).
- 19 of the 51 crashes were rear end crashes, likely the result of backups at the intersection. 11 of the rear end crashes were in the northbound direction and 4 were in the southbound direction (2 eastbound, 2 westbound). This could indicate that backups are worse for northbound vehicles, although the railroad crossing on the south leg could also result in some rear end crashes for vehicles stopping for a train.
- Rice Street at Bahnson Avenue (Minor Street Stop Control) Total Crashes - $2 \quad$ Crash Rate - 0.10 Critical Crash Rate - 0.58 Critical Index - 0.09
- With only 2 crashes over the last 5 years at this intersection, no crash trends exist.

Page 11

6th Street Crashes (3 Intersections)

- $\mathbf{6}^{\text {th }}$ Street at Lowell Avenue (Minor Street Stop Control)
Total Crashes - $8 \quad$ Crash Rate - 0.38 Critical Crash Rate - 0.59 Critical Index - 0.65
- 5 of the 8 crashes were right-angle crashes. 4 out of 5 of the right-angle crashes involved a westbound vehicle and a vehicle from one of the minor streets.
- $\mathbf{6}^{\text {th }}$ Street at Leadale Avenue (Minor Street Stop Control)

Total Crashes - $8 \quad$ Crash Rate - 0.41 Critical Crash Rate - 0.60 Critical Index - 0.69

- 3 of the 8 crashes were right-angle crashes and 2 were side-swipe crashes. 7 of the 8 crashes involved a westbound vehicle.
- $6^{\text {th }}$ Street at Cleveland Avenue (Traffic Signal)
Total Crashes - $88 \quad$ Crash Rate - 2.26 Critical Crash Rate - $1.35 \quad$ Critical Index - 1.67
- 88 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 43 of the 88 crashes were rear end crashes, likely the result of backups at the intersection. 18 of the rear end crashes were in the westbound direction and 9 were in the eastbound direction (11 northbound, 5 southbound).
- 31 of the 88 crashes were right-angle crashes. 14 involved vehicles taking a left turn.
- There were 2 pedestrian crashes and 1 bicycle crash at this intersection.

1. A northbound bicycle failed to yield to a westbound right turning vehicle (Severity B)
2. A northbound left turning vehicle failed to yield to a pedestrian (Severity B)
3. A pedestrian disregarded the traffic control and was struck by an eastbound vehicle (Severity C).
$10^{\text {th }}$ Street Crashes (9 Intersections)

- $10^{\text {th }}$ Street at Jessica Avenue (Traffic Signal)

Total Crashes - $12 \quad$ Crash Rate - 0.28 Critical Crash Rate - 0.90 Critical Index - 0.31

- 9 of the 12 crashes were rear end crashes, likely due to backups at the intersection. 7 of the rear end crashes were in the eastbound direction and 2 were in the westbound direction.
- $10^{\text {th }}$ Street at St Paul Avenue (Minor Street Stop Control)

Total Crashes - $14 \quad$ Crash Rate - 0.32 Critical Crash Rate - 0.48 Critical Index - 0.66

- 11 of the 14 crashes were right-angle crashes, 8 involved a southbound vehicle failing to yield to a westbound vehicle.
- $10^{\text {th }}$ Street at Lowell Avenue (Traffic Signal)

Total Crashes - $52 \quad$ Crash Rate - $1.11 \quad$ Critical Crash Rate - $0.89 \quad$ Critical Index - 1.25

- 52 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 36 of the 52 crashes were rear end crashes, likely due to backups at the intersection. 28 of the rear end crashes were in the eastbound direction and 6 were in the westbound direction (2 southbound). This could indicate that backups are much worse for eastbound traffic than westbound traffic.
- 15 of the 52 crashes were right-angle crashes. 9 of the right-angle crashes involved vehicles taking a left turn, all 9 involved an eastbound vehicle.
- There was 1 incapacitating injury (severity A) crash at this intersection. This crash was an eastbound rear end crash.

Page 12

- $10^{\text {th }}$ Street at Conklin Avenue (Right-In/Right-Out Access)

Total Crashes - $6 \quad$ Crash Rate - 0.14 Critical Crash Rate-1.41 Critical Index - 0.10

- 2 of the 6 crashes involved vehicles turning right off of Conklin Avenue onto $10^{\text {th }}$ Street.
- 2 of 6 crashes involved westbound vehicles changing lanes to either turn onto Conklin Avenue or to avoid a vehicle that was slowing to do so.
- $10^{\text {th }}$ Street at I-229 Single Point Ramp Terminal (Traffic Signal)

Total Crashes - $150 \quad$ Crash Rate - $2.47 \quad$ Critical Crash Rate - $\underline{0.85} \quad$ Critical Index - $\underline{2.90}$

- 150 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern. Considering the crash rate is nearly triple the critical crash rate at this intersection, any design considerations should include improvements to reduce crashes at this intersection.
- 129 of the 150 crashes were rear end crashes, likely the result of backups at the intersection and signal timing issues. 45 of the rear end crashes were in the westbound direction and 26 were in the eastbound direction (43 northbound, 15 southbound).
- There were 3 incapacitating (severity A) crashes at this intersection.

1. A northbound vehicle stuck the bridge rail and a traffic sign
2. Two westbound rear end crashes

- $\mathbf{1 0}^{\text {th }}$ Street at Blaine Avenue (Right-In/Right-Out Access) Total Crashes - $5 \quad$ Crash Rate - 0.09 Critical Crash Rate - $1.35 \quad$ Critical Index - 0.07
- All 5 of these crashes involved vehicles either slowing down to take a right turn or changing lanes to avoid vehicles slowing down to do so.
- $10^{\text {th }}$ Street at Cleveland Avenue (Traffic Signal)

Total Crashes - $164 \quad$ Crash Rate - 2.56 \quad Critical Crash Rate - $\mathbf{1 . 2 6} \quad$ Critical Index - 2.03

- 164 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern. Considering the crash rate is over double the critical crash rate at this intersection, any design considerations should include improvements to reduce crashes at this intersection.
- 94 of the 164 crashes were rear end crashes, likely due to backups at the intersection. 43 of the rear ends were in the westbound direction and 20 were in the eastbound direction (17 northbound, 14 southbound). This could indicate that backups are much worse for westbound traffic than eastbound traffic. 22 of the 43 westbound rear end crashes occurred during the PM peak period (3 to 6 PM).
- 55 of the 164 crashes were right-angle crashes. 28 of the right-angle crashes involved vehicles taking a left turn, with 18 involving eastbound and westbound vehicles together (no westbound protected left phase).
- There was 1 incapacitating injury (severity A) crash at this intersection. This crash was a westbound rear end crash.
- $10^{\text {th }}$ Street at Chapel Hill Road (Minor Street Stop Control)

Total Crashes - $9 \quad$ Crash Rate - 0.22 Critical Crash Rate - 0.49 Critical Index $\mathbf{- 0 . 4 9}$

- 6 of the 9 crashes were right-angle crashes, all involved westbound vehicles.

Page 13

- $10^{\text {th }}$ Street at Hy-Vee Access (Traffic Signal)

Total Crashes - $25 \quad$ Crash Rate - 0.61 Critical Crash Rate - 0.91 Critical Index - 0.67

- 17 of the 25 crashes were rear end crashes, likely due to backups at the intersection. 12 of the rear ends were in the westbound direction and 5 were in the eastbound direction.
- There were 1 pedestrian and 1 bicycle crash at this intersection.

1. A bicycle failed to yield to a southbound left turning vehicle (Severity C)
2. A southbound left turning vehicle failed to yield to a pedestrian (Severity C)

$12^{\text {th }}$ Street Crashes (2 Intersections)

- $12^{\text {th }}$ Street at Lowell Avenue (Minor Street Stop Control)

Total Crashes - $7 \quad$ Crash Rate - $1.10 \quad$ Critical Crash Rate - $\underline{0.88} \quad$ Critical Index - 1.25

- 7 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 5 of the 7 crashes were right-angle crashes. All 5 crashes involved one vehicle from $12^{\text {th }}$ Street and one from Lowell Avenue. 4 of the 5 crashes involved a northbound vehicle.
- $12^{\text {th }}$ Street at Cleveland Avenue (Traffic Signal)

Total Crashes - $34 \quad$ Crash Rate - $1.73 \quad$ Critical Crash Rate - $\underline{1.05} \quad$ Critical Index - 1.65

- 34 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 22 of the 34 crashes were right-angle crashes. 12 of the right-angle crashes involved vehicles disregarding the traffic signal.
- There was 1 bicycle crash at this intersection. This crash involved a bicyclist failing to yield to a southbound through vehicle.

18 ${ }^{\text {th }}$ Street Crashes (3 Intersections)

- $1^{\text {th }}$ Street at Southeastern Avenue (Traffic Signal)

Total Crashes - $32 \quad$ Crash Rate - $1.80 \quad$ Critical Crash Rate - $\underline{1.07} \quad$ Critical Index $\mathbf{- 1 . 6 8}$

- 32 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 13 of the 32 crashes were rear end crashes, likely due to backups at the intersection. 8 of the rear ends were in the eastbound direction and 2 were in the westbound direction (2 northbound, 1 southbound).
- 11 of the 32 crashes right-angle crashes. 9 of the right-angle crashes involved vehicles taking a left turn.
- $1^{\text {th }}$ Street at Blaine Avenue (Minor Street Stop Control)

Total Crashes - $10 \quad$ Crash Rate - $\underline{0.84} \quad$ Critical Crash Rate - $\underline{0.70} \quad$ Critical Index $\mathbf{- 1 . 2 0}$

- 10 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 5 of the 10 crashes were right-angle crashes. 4 of the 5 crashes involved a northbound and a westbound vehicle.
- $18^{\text {th }}$ Street at Cleveland Avenue (Traffic Signal)

Total Crashes - $29 \quad$ Crash Rate - $1.51 \quad$ Critical Crash Rate - $1.05 \quad$ Critical Index - 1.43

- 29 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 15 of the 29 crashes were right-angle crashes.

Page 14

26 ${ }^{\text {th }}$ Street Crashes (6 Intersections)

It should be noted that the $26^{\text {th }}$ Street interchange area is currently in the process of being reconstructed and should be completed in the fall of 2020. Therefore, any safety concerns or crash trends may change significantly with a new interchange and roadway design.

- $\mathbf{2 6}^{\text {th }}$ Street at Van Eps Avenue (Traffic Signal)

Total Crashes - $16 \quad$ Crash Rate - 0.67 Critical Crash Rate - $1.02 \quad$ Critical Index - 0.66

- All 16 of the crashes were rear end crashes, likely due to backups at the intersection. 9 of the rear ends were in the westbound direction and 6 were in the eastbound direction (1 northbound).
- $\mathbf{2 6}^{\text {th }}$ Street at Yeager Road (Traffic Signal)

Total Crashes - $49 \quad$ Crash Rate - $\underline{1.16} \quad$ Critical Crash Rate - $\underline{0.91}$ Critical Index - $\underline{1.28}$

- Yeager will be realigned and no longer carry l-229 traffic as part of Exit 5 Interchange Project.
- 49 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 39 of the 49 crashes were rear end crashes, likely due to backups at the intersection. 25 of the rear ends were in the westbound direction and 7 were in the eastbound direction (1 northbound). This could indicate that backups are worse for westbound vehicles.
- Yeager Road at I-229 Southbound Ramp Terminal (Minor Street Stop Control)

$$
\text { Total Crashes - } 16 \quad \text { Crash Rate - } \underline{1.01} \quad \text { Critical Crash Rate - } \underline{0.65} \quad \text { Critical Index - } 1.54
$$

- As part of the reconstruction of the Exit 5, this intersection will be eliminated and the southbound I-229 ramps will have access directly to $26^{\text {th }}$ Street, creating a new intersection with traffic signal control.
- 16 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 10 of the 16 crashes were right-angle crashes. 7 of the right-angle crashes involved a southbound left turning vehicle failing to yield to a northbound vehicle.
- There was 1 incapacitating injury (severity A) crash at this intersection. This crash involved a westbound left turning vehicle failing to yield to a northbound vehicle.
- $\mathbf{2 6}^{\text {th }}$ Street at I-229 Northbound Ramp Terminal (Traffic Signal)

$$
\text { Total Crashes - } 99 \quad \text { Crash Rate - } \underline{1.93} \quad \text { Critical Crash Rate - } \underline{0.88} \quad \text { Critical Index - } \underline{2.20}
$$

- 99 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 70 of the 99 crashes were rear end crashes, likely due to backups at the intersection. 31 of the rear ends were in the northbound direction, 15 were in the eastbound direction, and 24 were in the westbound direction.
- $26^{\text {th }}$ Street at Southeastern Avenue (Traffic Signal)

Total Crashes - $107 \quad$ Crash Rate - $1.58 \quad$ Critical Crash Rate - $1.25 \quad$ Critical Index - 1.26

- 107 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 58 of the 107 crashes were rear end crashes, likely due to backups at the intersection. 28 of the rear ends were in the westbound direction and 15 were in the eastbound direction (9 northbound, 6 southbound).
- 38 of the 107 crashes were right-angle crashes. 16 of the right-angle crashes involved left turning vehicles.

November 18, 2020
Page 15

- $\mathbf{2 6}^{\text {th }}$ Street at Cleveland Avenue (Traffic Signal)

Total Crashes - $88 \quad$ Crash Rate - $1.82 \quad$ Critical Crash Rate - $0.89 \quad$ Critical Index - 2.06

- 88 crashes occurred over the last 5 years, this intersection has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 54 of the 88 crashes were rear end crashes, likely due to backups at the intersection. 36 of the rear ends were in the westbound direction and 14 were in the eastbound direction (4 northbound). This could indicate backups are worse for westbound vehicles.
- 24 of the 88 crashes were right-angle crashes. 10 of the right-angle crashes involved left turning vehicles.
- There was 1 incapacitating injury (severity A) crash at this intersection. This crash involved a drunk driver disregarding the traffic control.

I-229 Exit 6 (10th Street) Interchange Project - Safety Memo
November 18, 2020
Page 16

SEGMENT CRASHES

There were a total of 128 crashes along the roadway segments analyzed as part of this project between 2015 and 2019. The segments included any crashes between the 27 intersections analyzed that was not assigned as an intersection crash.

Crashes at any business or residential access would be considered segment crashes for the purposes of this analysis. Table 4 summarizes the crashes by severity for each segment.

Table 4 Segment Crashes

Roadway Description		Crash Severity							Rate Information		
	From / To	Fatal	A	B	C	PD	$\begin{array}{\|c} \text { Wild } \\ \text { Animal } \end{array}$	Total	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \end{aligned}$	$\begin{aligned} & \text { Critical } \\ & \text { Rate } \end{aligned}$	Critical Index
$\begin{aligned} & \ddot{\mathscr{\omega}} \\ & \ddot{\mathscr{O}} \end{aligned}$	Lowell Ave / I-229 SB Ramp	0	0	0	0	0	5	5	2.63	7.11	0.37
	I-229 SB Ramp / I-229 NB Ramp	0	0	0	0	0	4	4	0.76	5.47	0.14
	I-229 NB Ramp / Bahnson Ave	0	0	1	0	2	6	9	1.01	7.18	0.14
艹\#¢	Lowell Ave / Leadale Ave	0	0	1	0	2	0	3	2.36	10.20	0.23
	Leadale Ave / N Cleveland Ave	0	0	0	2	6	0	8	2.36	6.11	0.39
$\begin{aligned} & \ddot{\omega} \\ & \stackrel{5}{0} \end{aligned}$	Jessica Ave / St. Paul Ave	0	0	3	0	6	0	9	1.10	5.01	0.22
	St. Paul Ave / Lowell Ave	0	0	0	1	8	0	9	1.66	5.26	0.32
	Lowell Ave / Conklin Ave	0	0	0	0	0	0	0	0.00	4.72	0.00
	Conklin Ave / Single Point Ramp	0	0	0	0	0	0	0	0.00	5.00	0.00
	Single Point Ramp / Blaine Ave	0	0	1	0	2	0	3	0.75	4.20	0.18
	Blaine Ave / Cleveland Ave	0	0	0	1	2	0	3	0.81	4.26	0.19
	Cleveland Ave / Chapel Hill Rd	0	0	0	0	0	0	0	0.00	4.93	0.00
	Chapel Hill Rd/ Hy-Vee Access	0	0	0	0	4	0	4	0.72	5.42	0.13
$12^{\text {th }}$	Lowell Ave / Cleveland Ave	0	0	3	6	8	0	17	10.95	3.31	3.31
	Southeastern Ave / Blaine Ave	0	0	2	2	10	0	14	4.18	7.70	0.54
$18^{\text {th }}$	Blaine Ave / Cleveland Ave	0	0	2	0	1	0	3	4.78	11.96	0.40
SE	18th St / 26th St (Southeastern Ave)	0	0	0	0	6	1	7	0.81	2.32	0.35
$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{c}{\hat{N}} \\ & \underset{\sim}{2} \end{aligned}$	Van Eps Ave / Yeager Rd	0	0	1	1	9	0	11	1.74	6.96	0.25
	Yeager Rd / NB Ramp	0	0	1	0	2	0	3	0.36	5.02	0.07
	I-229 NB Ramp / Southeastern Ave	0	0	2	3	9	2	16	1.27	4.64	0.27
	Southeastern Ave / Cleveland Ave	0	0	0	0	0	0	0	0.00	5.34	0.00
	26th St / SB Ramp (Yeager Rd)	0	0	0	0	0	0	0	0.00	13.64	0.00
TOTAL		0	0	17	16	77	18	128	n/a	n/a	n/a

- Bold/Red shaded indicates a calculated crash rate that is at or exceeding the critical rate.

Below is a brief summary of the trends seen in these crashes as well as a summary of the roadway segment location with a crash rate that exceeds the calculated critical rate.

Segment Trends

- Approximately 38% of the segment crashes (48 out of 128) were single vehicle (ran off road, spin outs, etc.) or wild animal hit crashes.
- Approximately 66% of the segment crashes occurred during daylight conditions, with the remaining 34\% occurring when it was dark.
- Approximately 73% of the segment crashes occurred when the roadway surface was dry, with the remaining 27% occurring when the roadway was wet (16\%) or snowy/icy (11\%).
- Approximately 48% of the segment crashes occurred during the AM peak (6-9 AM) and PM peak (3-6 PM) periods.
- There were 3 crashes involving a pedestrian or bicyclist on the roadway segments between 2015 and 2019.
- A bicycle crash occurred on $6^{\text {th }}$ Street between Leadale Avenue and Cleveland Avenue and involved a vehicle taking a right turn into the gas station parking lot hitting a bicyclist.
- A pedestrian crash occurred on $10^{\text {th }}$ Street at Omaha Avenue and involved an eastbound vehicle making a right turn into a pedestrian.
- A pedestrian crash occurred on $12^{\text {th }}$ Street at Conklin Avenue and involved a pedestrian crossing the roadway, failing to yield.

$12^{\text {th }}$ Street

- $\quad 12^{\text {th }}$ Street between Lowell Avenue and Cleveland Avenue Total Crashes - $17 \quad$ Crash Rate - $10.95 \quad$ Critical Crash Rate - $3.13 \quad$ Critical Index - 3.31
- 17 crashes occurred along this 1,330-foot segment over the last 5 years, this segment has a crash rate that exceeds the calculated critical rate, indicating a safety concern.
- 7 crashes involved single vehicles, including 4 driving while intoxicated.
- There are two intersections, Conklin Avenue and Blaine Avenue, along this segment that each had about 5 crashes.

Other Study Corridors

No segments with crash rates that exceed the critical rate were found along Rice Street, $6^{\text {th }}$ Street, $10^{\text {th }}$ Street, $18^{\text {th }}$ Street, Southeastern Avenue, or $26^{\text {th }}$ Street.

RESULTS

The most recent 5-years of crash data, 2015 through 2019, was reviewed as part of the I-229 Exit 6 Interchange Project. A total of 1,632 crashes occurred within the study area during the 5 -year period. Crash rates were calculated for all segments and intersections and compared to the critical crash rates; a crash rate higher than the critical indicates a safety concern.

Mainline I-229 has 6 segment areas that have had crash rates above the critical, these include:

- Northbound I-229 Locations:
- Mainline segment between Exit 5 and Exit 6.
- Exit 6 Diverge Area.
- Exit 7 Merge Area.
- Southbound I-229 Locations:
- Exit 7 Merge Area.
- Exit 6 Diverge Area.
- Exit 6 Merge Area.

There were 3 ramp connections from I-229 that had crash rates above the critical rate, these include:

- Northbound I-229 Entrance Ramp from $26^{\text {th }}$ Street (Exit 5).
- Northbound I-229 Exit Ramp to Rice Street (Exit 7).
- Southbound I-229 Entrance Ramp from $10^{\text {th }}$ Street (Exit 6).

The study intersections included 23 recommended study locations; 4 additional intersection were included as they had approximately 10 crashes during the 5 -year period. A total of 15 intersections have crash rates that exceed the critical rates, these include:

- Rice Street at the I-229 Northbound Ramp Terminal
- $6^{\text {th }}$ Street at Cleveland Avenue
- $10^{\text {th }}$ Street at Lowell Avenue
- $10^{\text {th }}$ Street at I-229 SPUI
- $10^{\text {th }}$ Street at Cleveland Avenue
- $12^{\text {th }}$ Street at Lowell Avenue
- $12^{\text {th }}$ Street at Cleveland Avenue
- $18^{\text {th }}$ Street at Southeastern Avenue
- $18^{\text {th }}$ Street at Blaine Avenue
- $18^{\text {th }}$ Street at Cleveland Avenue
- $26^{\text {th }}$ Street at Yeager Road**
- $26^{\text {th }}$ Street at I-229 Northbound Ramp Terminal**
- $26^{\text {th }}$ Street at Southeastern Avenue**
- $26^{\text {th }}$ Street at Cleveland Avenue**
- Yeager Road at I-229 Southbound Ramp Termina|**
${ }^{* *} 26^{\text {th }}$ Street/Exit 5 is currently under construction and the new design should improve safety on the corridor.
Arterial segments were divided between intersections, a total of 22 segments were evaluated along the 7 roadways. Only 1 segment had a crash rate higher than the critical rate.
- $12^{\text {th }}$ Street: between Lowell Avenue and Cleveland Avenue

Figure 2 highlights the mainline, ramp connection segments, and intersections that have crash rates that are above the critical rate.

Figure 2 Crash Rate Summary

It should be noted that the current construction project at the l-229 Exit 5 ($26^{\text {th }}$ Street) interchange will provide safety improvements to the intersections being reconstructed between Yeager Road and Southeastern Avenue. While the $26^{\text {th }}$ Street at Cleveland intersection is not within the construction limits, over 40% of the existing crashes at that intersection are westbound rear end crashes; therefore, improvements downstream should reduce congestion and improve the safety of this intersection. The crashes on the northbound I-229 entrance ramp from $26^{\text {th }}$ Street may not be improved as part current construction project; the existing crashes mainly occurred on the curved, loop ramp portion of the existing entrance ramp which is not fully part of the ongoing construction project.

This analysis is intended to show existing safety issues within the project area. Design changes for the study interchange, intersections, and surrounding project area should consider safety improvements for the intersections and segments that have a history of an existing safety problem.

To address the existing safety concerns throughout the project area, the following is a partial list of potential safety improvements that could be considered during the overall study recommendations:

- High Friction Surface Treatments (HFST) - improved traction for road curves in all weather conditions.
- Intelligent Transportation Systems (ITS) - improved warning information for changes in roadway conditions.
- Apply current design standards - this applies to both freeway and arterial corridors.
- Added capacity improvements to improve the traffic operations flow and efficiency.
- Signal Timing and Phasing updates -including left turn phases and improved traffic flow.

Attachments:

Tables A1a through A2b - Crash Summary Tables - Mainline I-229 and I-229 Ramps
Tables B1a through B2b - Crash Summary Tables - Intersection and Segment Crashes
Figures A1 through A3 - Crash Location Figures

Legend

Crashes (2015-2019)

动监 Fatal injury (0)

- Injury (32)
- Property Damage Only (141)
- Wild Animal Hit (43)

Project: HGRSP 156524

Legend

Crashes (2015-2019)

Fatal injury (2)

- Injury (136)
- Property Damage Only (484)
- Wild Animal Hit (21)

Table A1a
I-229 Exit 6 Interchange Project
2015 to 2019 Crash Data
SDDOT Crash Geodatabase Data

Table A1b
I-229 Exit 6 Interchange Project
2015 to 2019 Crash Data
SDDOT Crash Geodatabase Data

	Mainline Segments		Diagram - Crash Type								Light Condition		Surface Condition		
	FROM	Road Section	Rear End	$\begin{aligned} & \hline \text { Right } \\ & \text { Angle } \\ & \hline \end{aligned}$	Side Swipe	Head On	$\begin{gathered} \hline \text { One- } \\ \text { Vehicle } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wild } \\ \text { Animal } \\ \hline \end{gathered}$	Ped/Bike	Total	Day	Dark	Dry	Wet	Snow/lce
	Between Exits 4 \& 5	Urban Interstate	1	0	1	0	2	0	0	4	3	1	3	1	0
	Exit 5 Diverge	Urban Interstate	7	0	2	0	1	1	0	11	5	6	7	2	2
	Exit 5 between Ramps	Urban Interstate	0	0	1	0	4	3	0	8	4	4	6	0	2
	Exit 5 Merge	Urban Interstate	0	0	1	0	4	2	0	7	3	4	3	1	3
	Between Exits 5 \& 6	Urban Interstate	4	2	3	0	32	4	0	45	28	17	16	1	28
	Exit 6 Diverge	Urban Interstate	11	1	3	0	8	1	0	24	13	11	13	7	4
	Exit 6 between Ramps	Urban Interstate	0	1	4	0	3	0	0	8	6	2	5	1	2
	Exit 6 Merge	Urban Interstate	2	0	3	0	1	0	0	6	6	0	6	0	0
	Between Exits 6 \& 7	Urban Interstate	3	3	1	0	6	9	0	22	11	11	10	4	8
	Exit 7 Diverge	Urban Interstate	0	0	1	0	3	6	0	10	4	6	8	2	0
	Exit 7 between Ramps	Urban Interstate	0	1	0	0	2	4	0	7	2	5	4	1	2
	Exit 7 Merge	Urban Interstate	2	1	2	0	15	6	0	26	20	6	9	0	17
	Exit 7 Diverge	Urban Interstate	0	0	1	0	5	2	0	8	1	7	5	2	1
	Exit 7 between Ramps	Urban Interstate	0	0	0	0	4	3	0	7	5	2	2	1	4
	Exit 7 Merge	Urban Interstate	2	4	8	0	7	1	0	22	16	6	12	4	6
	Between Exits 7 \& 6	Urban Interstate	4	0	0	0	8	13	0	25	12	13	19	1	5
	Exit 6 Diverge	Urban Interstate	1	0	1	0	12	1	0	15	11	4	8	4	3
	Exit 6 between Ramps	Urban Interstate	2	0	2	0	10	1	0	15	11	4	5	3	7
	Exit 6 Merge	Urban Interstate	4	1	7	0	6	0	0	18	14	4	12	3	3
	Between Exits 6 \& 5	Urban Interstate	9	2	3	0	23	0	0	37	30	7	18	1	18
	Exit 5 Diverge	Urban Interstate	1	0	0	0	2	1	0	4	1	3	2	1	1
	Exit 5 between Ramps	Urban Interstate	1	1	0	0	0	1	0	3	3	0	3	0	0
	Exit 5 Merge	Urban Interstate	1	1	4	0	1	3	0	10	7	3	9	0	1
	Between Exits 5 \& 4	Urban Interstate	2	2	1	0	2	4	0	11	7	4	6	3	2
TOTAL		TOTAL	57	20	49	0	161	66	0	353	223	130	191	43	119
			16\%	6\%	14\%	0\%	46\%	19\%	0\%		63\%	37\%	54\%	12\%	34\%

NOTES:
Crash Rates - Number of crashes per million entering vehicles
Exceeding the Calculated Critical Rates indicated a sustained crash problem.

Table A2a
I-229 Exit 6 Interchange Project
2015 to 2019 Crash Data

Table A2b
1-229 Exit 6 Interchange Project
2015 to 2019 Crash Data
SDDOT Crash Geodatabase Data

[^1]| SDDOT Statewide Averages | |
| :---: | :---: |
| Segement Type | Crash Rate |
| Urban Interstate | 1.03 |

Table B1a
I-229 Exit 6 Project
2015 to 2019 Crash Data
SDDOT Crash Geodatabase Data

SDDOT Crash Geodatabase Data										INTERSECTION CRASH RATE INFORMATION			
Study Intersections			Crash Severity							Crash Rate	Critical Rates	Critical	Sioux Falls
Intersection	Control Type	$\begin{gathered} \text { Entering } \\ \text { ADT } \\ \hline \end{gathered}$	Fatal	A	B	c	Property	$\begin{gathered} \text { Wild Animal } \\ \text { Hits } \\ \hline \end{gathered}$	Total	$\begin{gathered} \text { Crash } \\ \text { Rate } \\ \hline \end{gathered}$	$\begin{gathered} \text { Crash } \\ \text { Rate } \\ \hline \end{gathered}$	Critical Index	$\begin{aligned} & \text { Crash } \\ & \text { Rate } \\ & \hline \end{aligned}$
Rice St at Lowell Ave	Unsignalized-one road above ADT 4,000	13,100	0	0	1	1	7	0	9	0.38	0.56	0.67	0.27
Rice St at I-229 SB Ramp Terminal**	Signal-one road above ADT 10,000	14,900	0	1	1	3	9	0	14	0.51	0.99	0.52	0.59
Rice St at l-229 NB Ramp Terminal**	Signal-one road above ADT 10,000	18,270	0	0	2	10	39	0	51	1.53	0.95	1.61	0.59
Rice St at Bahnson Ave	Unsignalized-one road above ADT 4,000	10,810	0	0	0	1	1	0	2	0.10	0.60	0.17	0.27
6th St at Lowell Ave	Unsignalized-one road above ADT 4,000	11,530	0	0	1	2	5	0	8	0.38	0.59	0.65	0.27
6th St at Leadale Ave	Unsignalized-one road above ADT 4,000	10,700	0	0	0	0	8	0	8	0.41	0.60	0.69	0.27
6th St at N Cleveland Ave**	Signal-both roads above ADT 10,000	21,350	0	0	8	14	66	0	88	$\underline{2.26}$	1.35	1.67	0.94
10th St at Jessica Ave**	Signal-one road above ADT 10,000	23,400	0	0	0	3	9	0	12	0.28	0.90	0.31	0.59
10th St at St. Paul Ave	Unsignalized-one road above ADT 4,000	24,050	0	0	4	1	9	0	14	0.32	0.48	0.66	0.27
10th St at Lowell Ave**	Signal-one road above ADT 10,000	25,550	0	1	5	12	34	0	52	1.11	0.89	1.25	0.59
10th St at Conklin Ave	Other	23,400	0	0	1	1	4	0	6	0.14	1.41	0.10	1.00
10th St at Single Point Ramp Termina**	Signal-one road above ADT 10,000	33,240	0	3	3	24	120	0	150	2.47	0.85	2.90	0.59
10th St at Blaine Ave	Other	31,900	0	0	0	0	5	0	5	0.09	1.35	0.07	1.00
10th St at Cleveland Ave**	Signal-both roads above ADT 10,000	35,100	0	1	14	25	124	0	164	2.56	1.26	2.03	0.94
10th St at Chapel Hill Rd	Unsignalized-one road above ADT 4,000	22,500	0	0	2	0	7	0	9	0.22	0.49	0.45	0.27
10th St at Hy-Vee Access**	Signal-one road above ADT 10,000	22,500	0	0	0	6	19	0	25	0.61	0.91	0.67	0.59
12th St at Lowell Ave	Unsignalized-one road above ADT 4,000	3,500	0	0	1	2	4	0	7	1.10	0.88	1.25	0.27
12th St at Cleveland Ave**	Signal-both roads under ADT 10,000	10,750	0	0	1	7	26	0	34	1.73	1.05	1.65	0.58
18th St at Southeastern Ave**	Signal-both roads under ADT 10,000	9,750	0	0	2	2	28	0	32	1.80	1.07	1.68	0.58
18th St at Blaine Ave	Unsignalized-one road above ADT 4,000	6,500	0	0	1	0	9	0	10	0.84	0.70	1.20	0.27
18th St at Cleveland Ave**	Signal-both roads under ADT 10,000	10,550	0	0	1	4	24	0	29	$\underline{1.51}$	1.05	1.43	0.58
26th St at Van Eps Ave**	Signal-one road above ADT 10,000	13,000	0	0	2	2	12	0	16	0.67	1.02	0.66	0.59
26th St at Yeager Rd**	Signal-one road above ADT 10,000	23,050	0	0	4	12	33	0	49	1.16	0.91	1.28	0.59
Yeager Rd at SB Ramp Terminal	Unsignalized-one road above ADT 1,000	8,670	0	1	0	3	12	0	16	1.01	0.65	1.54	0.28
26th St at NB Ramp Termina**	Signal-one road above ADT 10,000	28,020	0	0	10	17	72	0	99	1.93	0.88	2.20	0.59
26th St at Southeastern Ave**	Signal-both roads above ADT 10,000	37,050	0	0	4	13	90	0	107	1.58	1.25	1.26	0.94
26th St at Cleveland Ave**	Signal-one road above ADT 10,000	26,450	0	1	6	20	61	0	88	1.82	0.89	2.06	0.59
TOTAL			0	8	74	185	837	0	1,104				
**Signalized Intersections													
											Critical Rate Exceeded	$\begin{gathered} \text { Critical } \\ \text { Index } \geq 1 \end{gathered}$	Average Rate Exceeded

Table B1b
I-229 Exits 3 \& 4 Project
2013 to 2017 Crash Data
SDDOT Crash Geodatabase Data

Study Intersections		Diagram - Crash Type							
Intersection	Control Type	Rear End	Right Angle	Side Swipe	Head On	$\begin{gathered} \hline \text { One- } \\ \text { Vehicle } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Wild } \\ \text { Animal } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Pedestrian } \\ \text { Crashes } \end{array}$	Total
Rice St at Lowell Ave	Unsignalized-one road above ADT 4,000	2	6	1	0	0	0	0	9
Rice St at l-229 SB Ramp Terminal**	Signal-one road above ADT 10,000	8	5	1	0	0	0	0	14
Rice St at l-229 NB Ramp Terminal**	Signal-one road above ADT 10,000	19	24	3	0	5	0	0	51
Rice St at Bahnson Ave	Unsignalized-one road above ADT 4,000	0	1	0	0	1	0	0	2
6th St at Lowell Ave	Unsignalized-one road above ADT 4,000	3	5	0	0	0	0	0	8
6th St at Leadale Ave	Unsignalized-one road above ADT 4,000	1	3	2	0	2	0	0	8
6th St at N Cleveland Ave**	Signal-both roads above ADT 10,000	43	31	8	2	1	0	3	88
10th St at Jessica Ave**	Signal-one road above ADT 10,000	9	2	1	0	0	0	0	12
10th St at St. Paul Ave	Unsignalized-one road above ADT 4,000	2	11	0	1	0	0	0	14
10th St at Lowell Ave**	Signal-one road above ADT 10,000	36	15	0	0	1	0	0	52
10th St at Conklin Ave	Other	1	2	2	0	1	0	0	6
10th St at Single Point Ramp Terminal**	Signal-one road above ADT 10,000	129	11	4	0	6	0	0	150
10th St at Blaine Ave	Other	0	0	4	0	1	0	0	5
10th St at Cleveland Ave**	Signal-both roads above ADT 10,000	94	55	9	0	5	0	1	164
10th St at Chapel Hill Rd	Unsignalized-one road above ADT 4,000	1	6	2	0	0	0	0	9
10th St at Hy-Vee Access**	Signal-one road above ADT 10,000	17	5	1	0	0	0	2	25
12th St at Lowell Ave	Unsignalized-one road above ADT 4,000	0	5	0	0	2	0	0	7
12th St at Cleveland Ave**	Signal-both roads under ADT 10,000	7	22	2	0	2	0	1	34
18th St at Southeastern Ave**	Signal-both roads under ADT 10,000	13	11	3	0	5	0	0	32
18th St at Blaine Ave	Unsignalized-one road above ADT 4,000	4	5	1	0	0	0	0	10
18th St at Cleveland Ave**	Signal-both roads under ADT 10,000	10	15	1	0	3	0	0	29
26th St at Van Eps Ave**	Signal-one road above ADT 10,000	16	0	0	0	0	0	0	16
26th St at Yeager Rd**	Signal-one road above ADT 10,000	39	9	0	1	0	0	0	49
Yeager Rd at SB Ramp Terminal	Unsignalized-one road above ADT 1,000	2	10	1	0	3	0	0	16
26th St at NB Ramp Termina**	Signal-one road above ADT 10,000	70	11	13	1	4	0	0	99
26th St at Southeastern Ave**	Signal-both roads above ADT 10,000	58	38	9	0	2	0	0	107
26th St at Cleveland Ave**	Signal-one road above ADT 10,000	54	24	2	0	8	0	0	88
TOTAL		638	332	70	5	52	0	7	1,104

Sioux Falls Average Rates	
Intersection Type	Crash Rate
Signal-both roads above ADT 10,000	0.94
Signal-one road above ADT 10,000	0.59
Signa-both roads under ADT 10,000	0.58
Unsignalized-both roads above ADT 4,000	0.28
Unsignalized-one road above ADT 4,000	0.27
Unsignalized-one road above ADT 1,000	0.28
Unsignalized-both roads under ADT 1,000	0.42
Other	

NOTES:
Crash Rates - Number of crashes per million entering vehicles
Exceeding the Calculated Critical Rates indicated a sustained crash proble

Table B2b
l-229 Exits 3 \& 4 Project
2013 to 2017 Crash Data
SDDOT Crash Geodatabase Data

	Roadway Segments			Diagram - Crash Type							
	FROM	то	Road Section	Rear End	Right Angle	Side Swipe	Head On	$\begin{gathered} \hline \text { One- } \\ \text { Vehicle } \\ \hline \end{gathered}$	$\begin{gathered} \text { Wild } \\ \text { Animal } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Pedestrian } \\ \text { Crashes } \end{array}$	Total
Rice St	Lowell Ave	1-229 SB Ramp Terminal	4-Lane - Turn Lanes (TWLTL)	0	0	0	0	0	5	0	5
	1-229 SB Ramp Terminal	1-229 NB Ramp Terminal	4-Lane - No Turn Lanes	0	0	0	0	0	4	0	4
	1-229 NB Ramp Terminal	Bahnson Ave	2-Lane - Turn Lanes (TWLTL)	2	0	0	0	1	6	0	9
6th St	Lowell Ave	Leadale Ave	2-Lane - Turn Lanes (TWLTL)	1	1	0	0	1	0	0	3
	Leadale Ave	N Cleveland Ave	4-Lane - Turn Lanes (TWLTL)	1	3	2	0	1	0	1	8
10th St	Jessica Ave	St. Paul Ave	4-Lane - Turn Lanes (TWLTL)	5	2	2	0	0	0	0	9
	St. Paul Ave	Lowell Ave	4-Lane - Turn Lanes (TWLTL)	1	6	1	0	0	0	1	9
	Lowell Ave	Conklin Ave	4-Lane - Median	0	0	0	0	0	0	0	0
	Conklin Ave	Single Point Ramp Terminal	4-Lane - Median	0	0	0	0	0	0	0	0
	Single Point Ramp Terminal	Blaine Ave	4-Lane - Median	0	3	0	0	0	0	0	3
	Blaine Ave	Cleveland Ave	4-Lane - Median	1	1	0	0	1	0	0	3
	Cleveland Ave	Chapel Hill Rd	4-Lane - Median	0	0	0	0	0	0	0	0
	Chapel Hill Rd	Hy-Vee Access	4-Lane - Turn Lanes (TWLTL)	2	1	0	0	1	0	0	4
12th St	Lowell Ave	Cleveland Ave	2-Lane - No Turn Lanes	2	8	0	0	6	0	1	17
18th St	Southeastern Ave	Blaine Ave	2-Lane - Turn Lanes (TWLTL)	3	0	2	0	9	0	0	14
	Blaine Ave	Cleveland Ave	2-Lane - Turn Lanes (TWLTL)	0	1	0	0	2	0	0	3
Southeastern	18th St	26th St	2-Lane - No Turn Lanes	2	1	0	0	3	1	0	7
26th St	Van Eps Ave	Yeager Rd	2-Lane - Turn Lanes (TWLTL)	6	4	0	0	1	0	0	11
	Yeager Rd	NB Ramp Terminal	4-Lane - No Turn Lanes	0	0	1	0	2	0	0	3
	NB Ramp Terminal	Southeastern Ave	4-Lane - No Turn Lanes	5	6	1	0	2	2	0	16
	Southeastern Ave	Cleveland Ave	4-Lane - Turn Lanes (TWLTL)	0	0	0	0	0	0	0	0
Yeager St	26th St	SB Ramp Terminal	2-Lane - Turn Lanes (TWLTL)	0	0	0	0	0	0	0	0
	TOTAL			31	37	9	0	30	18	3	128

0
0%

SDDOT Statewide Averages	$\begin{gathered} \text { Crash Rate } \\ (x=\text { Accesses/Mile }) \end{gathered}$
Segment Type	
2-Lane - No Turn Lanes	$C R=-0.0065 x+1.4033$
2-Lane - Turn Lanes (TWLTL)	$C R=-0.008 x+5.2641$
4-Lane - No Turn Lanes	$C R=-0.0026 x+3.3277$
4-Lane - Turn Lanes (TWLTL)	$C R=-0.0029 x+3.4004$
6-Lane - Turn Lanes (TWLTL)	$C R=-0.0216 x+12.142$
4-Lane - Median	$C R=-0.0013 x+2.2188$
6-Lane - Median	$C R=-0.0046 x+3.6133$

notes:

Crash Rates - Number of crashes per million entering vehicles
Exceeding the Calculated Critical Rates indicated a sustained crash problen

[^0]: Source: SDDOT Road Design Manual (Table 15-1)

[^1]: NOTES
 Crash Rates - Number of crashes per million entering vehicles
 Exceeding the Calculated Critical Rates indicated a sustained crash problem.

